

PHP Reactive Programming

Table of Contents

PHP Reactive Programming
Credits
About the Author
About the Reviewer
www.PacktPub.com

Why subscribe?
Customer Feedback
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Introduction to Reactive Programming
Imperative programming
Declarative programming
Sequential and parallel programming
Asynchronous programming

Asynchronous versus parallel programming
Functional programming

Functional programming in PHP
Eliminating side effects
Avoiding mutable data
First-class citizens and higher-order functions
Anonymous functions in PHP
PHP magic methods

Reactive programming

jQuery Promises
Gulp streaming build system
EventDispatcher component in PHP

Reactive Extensions
Autocomplete with RxJS
Mouse position on drag and drop

Introducing RxPHP
RxPHP 1.x and RxPHP 2

Summary
2. Reactive Programming with RxPHP

Basic principles of Reactive Extensions
Naming conventions in Reactive Extensions
Components of RxPHP

Observables
Observers
Singles
Subject
Disposable
Scheduler
Operators

Understanding the operator diagrams
The filter() operator
The debounceTime() operator
The concat operator

Other common operators
Writing the DebugSubject class
Writing JSONDecodeOperator

Simplifying propagation of notifications
Using custom operators in RxPHP 2

Writing CURLObservable
Imperative approach and cURL
Implementing cURL into a custom Observable

Running multiple requests asynchronously
The proc_open() and non-blocking fread()
Event loop and RxPHP
Summary

3. Writing a Reddit Reader with RxPHP
Examining RxPHP's internals

A closer look at subscribing to Observables
Emitting multiple values with Schedulers

A closer look at operator chains
Subscribing to ConnectableObservable
Using Subject instead of ConnectableObservable

Observable::create() and Observable::defer()
Creating Observables with Observable::create()
Creating Observables with Observable::defer()

Writing a Reddit reader using RxPHP
Using the Symfony Console component
Non-blocking user input and an event loop
Subscribing to user inputs

Non-blocking CURLObservable
Using Symfony Process component

The takeWhile() operator
Implementing subprocesses into the Reddit reader app

Types of disposable classes
Summary

4. Reactive versus a Typical Event-Driven Approach
Handling error states in operator chains

The retry() operator
CURLObservable and the retry() operator

The retryWhen() operator
CURLObservable and the retryWhen() operator
CURLObservable and controlled number of retries

The catchError() operator
The concat() and merge() operators

The merge() operator
The concat() operator
The concatMap() and flatMap() operators

Writing a reactive event dispatcher
A quick introduction to EventDispatcher

Working with event listeners
Working with event subscribers

Writing ReactiveEventDispatcher with RxPHP
Internal representation of event listeners as observers

Writing a ReactiveEventDispatcher class
Adding event listeners
Adding Observables
Adding event subscribers
Creating the Observable chain for an event

Comparing filter() to takeWhile()
Dispatching events
Practical example of ReactiveEventDispatcher

Working with event listeners
Working with event subscribers

Summary
5. Testing RxPHP Code

The doOn*() operators
Installing the PHPUnit package
Basics of writing tests using PHPUnit

Testing asynchronous code
Testing RxPHP code

Introducing VirtualTimeScheduler
HotObservable and ColdObservable
MockObserver
TestScheduler

Testing SumOperator
Testing ForkJoinObservable
Summary

6. PHP Streams API and Higher-Order Observables
Using Promises in PHP

Using the then() and done() methods
Using the otherwise() and always() methods

PHP Streams API
Using the stream_select() function
StreamSelectLoop and stream_select() function
Scheduling events with StreamSelectLoop

Minimalistic HTTP Server with StreamSelectLoop
A note on nonblocking event loops

Using multiple StreamSelectLoop instances
Event loop interoperability in PHP
Event loops and future versions of RxPHP

Higher-order Observables
The concatAll() and mergeAll() operators
The switchLatest Operator
The combineLatest() operator

Summary
7. Implementing Socket IPC and WebSocket Server/Client

Backpressure in Reactive Extensions
Lossy backpressure

Implementing throttleTime() with the filter() operator
Loss-less backpressure

Implementing ProcessObservable
Server Manager application

Creating new subprocesses with ProcessObservable
Game Server application

Server Manager and the Unix socket server
Implementing the GameServerStreamEndpoint class
Displaying real-time statuses from subprocesses

Combining the switchLatest() and combineLatest() operators
Implementing a WebSocket server
Implementing a WebSocket client
Summary

8. Multicasting in RxPHP and PHP7 pthreads Extension
Subjects

BehaviorSubject
ReplaySubject
AsyncSubject

Multicasting in RxPHP
The multicast() operator and ConnectableObservable
MulticastObservable

Subjects and their internal state
The multicast() operator and MulticastObservable

Comparing ConnectableObservable and MulticastObservable
The multicastWithSelector() operator

The publish*() and share*() operator groups
The refCount() operator

The publish() and share() operators
The publishValue() and shareValue() operators
The replay(), shareReplay(), and publishLast() operators

PHP pthreads extension
Prerequisites
Introduction to multithreading with pthreads in PHP7
Getting/setting data from/to threads
Using Thread, Worker, and Pool classes

Retrieving results from thread pools
RxPHP and pthreads
Summary

9. Multithreaded and Distributed Computing with pthreads and Gearman
Introduction to the PHP Parser library

Using the PHP Parser library
Implementing PHPParserOperator

Writing AssignmentInConditionNodeVisitor
Writing PHPParserOperator

Implementing ThreadPoolOperator
Implementing PHPParserThread
Implementing PHPParserWorker
Running PHP Parser in a multithreaded application

Introduction to Gearman
String strlen client and worker
Running PHP Parser as a Gearman worker
Comparing pthreads and Gearman

Summary
10. Using Advanced Operators and Techniques in RxPHP

The zip() operator
The window() operator
The materialize() and dematerialize() operators

Customizing error bubbling with dematerialize()
Error handling in RxPHP operator chains

The default error handler
Catching exceptions inside operators

The Observable::create() method versus the Subject class
Hot/cold Observables and Observable::create()

Call stack length and EventLoopScheduler
Unsubscribing versus completing an Observable
Anonymous operators
Writing a custom DirectoryIteratorObservable

DirectoryIteratorSharedObservable
FTP client with RxPHP
Summary

Appendix. Reusing RxPHP Techniques in RxJS
What is RxJS?

JavaScript module systems
The deployment process of RxJS 5

A quick introduction to RxJS 5 in Node.js
Asynchronous calls in RxJS
Node.js and asynchronous events
Lossy backpressure with the debounceTime() operator

Higher-order Observables in RxJS 5 and RxPHP
Operators specific for RxJS 5

The expand() operator
The finally() operator
The withLatestFrom() operator
Caching HTTP requests with publishReplay() and take()

Summary

PHP Reactive Programming

PHP Reactive Programming
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained in
this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate use
of capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

First published: March 2017

Production reference: 1230317

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-287-9

www.packtpub.com

http://www.packtpub.com

Credits
Author

Martin Sikora

Copy Editor

Safis Editing

Reviewer

Alexandru-Emil Lupu

Project Coordinator

Vaidehi Sawant

Commissioning Editor

Kunal Parikh

Proofreader

Safis Editing

Acquisition Editor

Chaitanya Nair

Indexer

Francy Puthiry

Content Development Editor

Zeeyan Pinheiro

Graphics

Abhinash Sahu

Technical Editor

Vivek Pala

Production Coordinator

Aparna Bhagat

About the Author
Martin Sikora has been professionally programming since 2006 for
companies such as Miton CZ, Symbio Digital, and PRIA in various
languages, mostly PHP and TypeScript. Since 2017, he's freelancing, trying
to work on open source projects in TypeScript, PHP, Dart, C, and Python.
He's been actively contributing to RxPHP and RxJS 5 on both Github and
StackOverflow. He is a Zend certified engineer and was a member of the
winning team during Google Dart Hackathon 2012 in Prague. His first
publication was Dart Essentials, by Packt, published in May 2015.
Occasionally, Martin writes articles for
https://www.smashingmagazine.com/. You can connect with him on
LinkedIn at https://cz.linkedin.com/in/martin-sikora-a63b9a30 or GitHub at
https://github.com/martinsik.

https://www.smashingmagazine.com/
https://cz.linkedin.com/in/martin-sikora-a63b9a30
https://github.com/martinsik

About the Reviewer
Alexandru-Emil Lupu has about 10 years of experience in the web
development area, during which he has developed a range of skills, from the
implementation of e-commerce platforms and presentation sites to writing
code for online games. He is one of those developers who is constantly
learning new programming languages, and he has no problem understanding
Ruby, PHP, Python, JavaScript, and Java code.

He is passionate about programming and computer science. When he was a
teenager, he did not own a computer or have an Internet connection and
would constantly go to an Internet cafe to read all about his programming
problems, then go home and struggle to implement what he read. He gladly
recounts those days and likes to believe that he's the same guy he was 10
years ago, but with much more experience. For him, "passion" is the word
that describes the challenge he had when he was a youngster willing to learn
new stuff, getting home at 2 or 3 AM determined to install Linux just to learn
something new-this too when he had a Pentium I at 133 MHz in the Pentium
IV at 1800 MHz era!

Alexandru-Emil is learning all the time and likes to stay close to well-trained
and passionate people who better motivate him. He also likes teams that work
intelligently and are energetic, which is why he joined the eJobs team--to face
a challenge.

As a proof of his perseverance, Alexandru-Emil Lupu is a certified Scrum
Master who is passionate about Agile Development. His resume also includes
3 years as a Ruby on Rails developer and a CTO at 2Performant Network
(2Parale); 4 years at eRepublik.com, an online game, during which he was
responsible for a long list of tasks, including feature development,
performance optimization, and a Tech Lead for an internal project. He has
learned the hard way the necessary skills to fulfill his day-to-day tasks at
2Performant.com and, later, all the experience he's got, he is using at eJobs.ro
to face new kinds of challenges.

In his little free time, he develops small personal projects. And if he still has
any spare time, he reads some technical or project management books or
articles. When he's relaxing, he watches thriller movies and likes playing
shooter or strategy games.

He doesn’t talk too much, but he's willing to teach others programming. If
you meet him for a coffee, prepare yourself to be entertained, he likes to tell a
lot of contextual jokes.

You can connect with him on LinkedIn
at https://www.linkedin.com/in/alecslupu and interact with him on
http://github.com/alecslupu.

https://www.linkedin.com/in/alecslupu
http://github.com/alecslupu

www.PacktPub.com
For support files and downloads related to your book, please
visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version
at www.PacktPub.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at service@packtpub.com
for more details.

At www.PacktPub.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters and receive exclusive
discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full
access to all Packt books and video courses, as well as industry-leading tools
to help you plan your personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on
this book's Amazon page at https://goo.gl/5qqL4V.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free
eBooks and videos in exchange for their valuable feedback. Help us be
relentless in improving our products!

https://goo.gl/5qqL4V

Preface
Reactive programming has gained distinct popularity in recent years. This is
partly thanks to JavaScript web frameworks such as Angular2 or React, but
also because of the increasing popularity of functional and asynchronous
programming in languages that support multiple programming paradigms,
such as JavaScript, Java, Python, or PHP.

Nowadays, reactive programming is closely associated with Reactive
Extensions (also called ReactiveX or just Rx); the most popular library to
leverage reactive programming. Notably, RxJS 5, the JavaScript
implementation of Rx, is very likely to be the first encounter with reactive
programming for many developers. In this book, we will mostly focus on
using the PHP port of Rx, called RxPHP
(https://github.com/ReactiveX/RxPHP).

Asynchronous programming is not what PHP developers typically deal with.
In fact, it’s kind of an uncharted territory because there aren’t many resources
available on this topic in PHP. Since reactive programming goes hand in
hand with asynchronous programming, we’ll work a lot with event loops,
blocking and non-blocking code, subprocesses, threads, and IPC.

Our primary intention, however, will be learning Reactive Extensions and
reactive programming with RxPHP. This book includes both RxPHP 1 and
RxPHP 2. All examples are written for RxPHP 1 because the API is almost
the same, and at the time of writing this book, RxPHP 2 is still in
development. Also, RxPHP 1 requires just PHP 5.6+, while RxPHP 2
requires PHP 7+. Nonetheless, we’ll properly emphasize and explain
whenever the APIs of RxPHP 1 and RxPHP 2 differ.

https://github.com/ReactiveX/RxPHP

What this book covers
Chapter 1, Introduction to Reactive Programming, explains definitions of
typical programming paradigms such as imperative, asynchronous,
functional, parallel, and reactive programming. We’ll see what are the
prerequisites to use functional programming in PHP and how all this is
related to Reactive Extensions. At the end, we’ll introduce the RxPHP library
as a tool of choice for this entire book.

Chapter 2, Reactive Programming with RxPHP, presents the basic concepts
and common terminology used in reactive programming with RxPHP. It
introduces Observables, observers, operators, Subjects, and disposables as the
building blocks of any Rx application.

Chapter 3, Writing a Reddit Reader with RxPHP, builds on the knowledge
from the previous chapter to write a Reddit reader application internally
based on RxPHP. This will require downloading data via cURL and handling
user input, and comparing the difference between blocking and non-blocking
code in PHP in relation to RxPHP. We’ll also have a sneak peak into using
event loops in PHP.

Chapter 4, Reactive versus a Typical Event-Driven Approach, shows that in
order to use Rx in practice, we need to know how can we combine RxPHP
code with some already existing code that isn’t based on Rx. For this reason,
we’ll take the Event Dispatcher component that comes with the Symfony3
framework and extend it with Rx functionality.

Chapter 5, Testing RxPHP Code, covers testing, which is a crucial part of
every development process. Apart from PHPUnit, we’ll also use the special
testing classes that come with RxPHP out of the box. We’ll also take a look
at testing asynchronous code in general and what caveats we need to be
aware of.

Chapter 6, PHP Streams API and Higher-Order Observables, introduces the
PHP Streams API and event loops. These two concepts are tightly coupled in
RxPHP and we’ll learn why and how. We’ll talk about the issues we can

encounter when using multiple event loops in the same application and how
the PHP community is trying to solve them. We’ll also introduce the concept
of higher-order Observables as a more advanced functionality of Rx.

Chapter 7, Implementing Socket IPC and WebSocket Server/Client,
demonstrates how in order to write a more complicated asynchronous
application, we’ll build a chat manager, server, and client as three separate
processes that communicate with each other via Unix sockets and
WebSockets. We’ll also use in practice the higher-order Observables from
the previous chapter.

Chapter 8, Multicasting in RxPHP and PHP7 pthreads Extension, introduces
us to the concept of multicasting in Rx and all the components that RxPHP
provides for this purpose. We’ll also start using the pthreads extension for
PHP7. This will let us run our code in parallel in multiple threads.

Chapter 9, Multithreaded and Distributed Computing with pthreads and
Gearman, wraps the knowledge of pthreads from the previous chapter into
reusable components that can be used together with RxPHP. We also
introduce the Gearman framework as a way to distribute work among
multiple processes. In the end, we’ll compare the pros and cons of using
multiple threads and processes to run tasks in parallel.

Chapter 10, Using Advanced Operators and Techniques in RxPHP, will focus
on not-so-common principles in Rx. These are mostly advanced operators for
very specific tasks, but also implementation details of RxPHP components
and their behavior in specific use cases that we should be aware of.

Appendix, Reusing RxPP Techniques in RxJS, demonstrates with practical
examples how to deal with typical use cases where either RxPHP or RxJS
come in handy. We'll see how asynchronous programming is used in a
JavaScript environment and compare it to PHP. This final chapter also goes
into more detail about what RxJS 5 is and how it differs from RxPHP.

What you need for this book
The main prerequisites for most of this book are a PHP 5.6+ interpreter and
any text editor.

We’ll use the Composer (https://getcomposer.org/) tool to install all external
dependencies in our examples. Some basic knowledge of Composer and
PHPUnit is helpful but not absolutely necessary.

In later chapters, we’ll also use the pthreads PHP extension, which requires
PHP 7 or above and the Gearman job server; both should be available for all
platforms.

Also, some basic knowledge of the Unix environment (sockets, processes,
signals, and so on) is helpful.

https://getcomposer.org/

Who this book is for
This book is intended for intermediate developers with at least average
knowledge of PHP who want to learn about asynchronous and reactive
programming in PHP and Reactive Extensions in particular.

Apart from the RxPHP library, this book is framework agnostic, so you don’t
need knowledge of any web framework.

All the topics regarding RxPHP are generally applicable to any Rx
implementation, so switching from RxPHP to RxJS, for example, will be
very easy.

Conventions
In this book, you will find a number of text styles that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are
shown as follows: "Every time we write an Observable, we'll extend the base
Rx\Observable class."

A block of code is set as follows:

Rx\Observable::just('{"value":42}')

 ->lift(function() {

 return new JSONDecodeOperator();

 })

 ->subscribe(new DebugSubject());

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

use Rx\Observable\IntervalObservable;

class RedditCommand extends Command {

 /** @var \Rx\Subject\Subject */

 private $subject;

 private $interval;

Any command-line input or output is written as follows:

$ sleep.php proc1 3

proc1: 1

proc1: 2

proc1: 3

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:

"PHP has to be compiled with the Thread Safety option enabled."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think
about this book-what you liked or disliked. Reader feedback is important for
us as it helps us develop titles that you will really get the most out of. To send
us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message. If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of
things to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and
password.

2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/PHP-Reactive-Programming. We also
have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/PHP-Reactive-Programming
https://github.com/PacktPublishing/

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books-maybe a
mistake in the text or the code-we would be grateful if you could report this
to us. By doing so, you can save other readers from frustration and help us
improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the
book in the search field. The required information will appear under the
Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across
all media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works in any form on
the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

Chapter 1. Introduction to Reactive
Programming
Reactive programming has become a very popular and in demand topic over
the last few years, and even though the ideas behind it aren't new, it takes the
good parts from multiple different programming paradigms. This book's
purpose is to teach you how to start writing PHP applications with principles
of reactive programming in mind and in combination with pre-existing
libraries.

In this chapter, we'll learn the most important principles that will guide us
throughout this entire book:

Recap well-known programming paradigms and quickly explain their
meaning for humans.
We'll see how we can use functional PHP programming, even today,
using practical examples. We pay special attention to how we can use
anonymous functions.
Explain what reactive programing is and what good parts it takes from
other programming paradigms.
We'll have a look at some examples of widely spread JavaScript and
PHP libraries that already use very similar principles to reactive
programming.
Introduce Reactive Extensions and see how these fit into the world of
reactive programming.
Show what using Reactive Extensions looks like using RxJS and how it
fits into the grand scheme of things.
Create a first simple demo with RxPHP library.

Since reactive programming is a programming paradigm, we'll take a quick
look at other common paradigms that all of us have probably already heard of
and that you'll see mentioned every time you read or hear about reactive
programming.

Imperative programming
Imperative programming is a programming paradigm around executing
statements that change the program's state.

What this means in human language:

Programming paradigm: This is a set of concepts defining a style of
building and structuring programs. Most programming languages, such
as PHP, support multiple paradigms. We can also think of it as a mindset
and a way we approach problems when using such paradigms.
Statements: Units of action with side effects in imperative
programming evaluated in sequences usually containing expressions.
Statements are executed for their side effects and expressions for their
return value. Consider this example:

 $a = 2 + 5

This line of code is a statement where 2 + 5 is an expression. The
expected side effect is assigning the value 7 to the $a variable. This
leads to changing the program's current state. Another statement could
be, for instance:

 if ($a > 5) { }

This statement has one expression and no return value.
State: Values of program variables in memory at any given time. In
imperative programming, we define a series of statements that control
the program's flow and, therefore, change its state.

Declarative programming
Declarative programming is a paradigm focused on describing a program's
logic instead of particular executional steps. In other words, in declarative
programming, we define what we want instead of how we want it. In contrast
to imperative programming, programs in declarative programming are
defined with expressions instead of statements.

Very common examples could be SQL and HTML languages. Consider the
following database query:

SELECT * FROM user WHERE id = 42

In SQL, we define what data from what table we want to query, but the
implementation details are completely hidden for us. We don't even want to
worry about how the database engine stores or indexes the data.

In HTML, we define the structure of elements; what's behind the browser's
rendering process isn't important for us. We just want to see the page on the
screen.

Sequential and parallel
programming
We can think of sequential and parallel programming as counterparts.

In sequential programming, we're executing processes in order. This means
that a process is started when the preceding process has finished. In other
words, there is always only one process being executed. The following figure
illustrates this principle:

In parallel programming, multiple processes can be executed concurrently:

To make this easier to understand and more relevant to PHP, we can, instead
of processes, think of lines of code. PHP interpreter is always sequential and
it never executes code in parallel.

In Chapter 9, Multithreaded and Distributed Computing with pthreads and

Gearman, we'll use PHP module pthreads that makes it possible to run PHP
code in multiple threads, but we'll see that it's not as simple as it seems.
Module pthreads, in fact, creates multiple independent PHP interpreters, each
running in a separate thread.

Asynchronous programming
The term asynchronous programming is very common in languages such as
JavaScript. A very general definition is that, in asynchronous programming,
we're executing code in a different order than it was defined. This is typical
for any event based application.

For example, in JavaScript, we first define an event listener with its handler,
which is executed some time later, when an appropriate event occurs.

In PHP, this could be, for example, a web application that needs to send an e-
mail when we create a new blog article. Just, instead of lines of code, we're
considering tasks. The following figure demonstrates an asynchronously
triggered event:

While the web application was saving an article (processing a task), it
triggered an event that sent an e-mail and then carried on with the original
task. The event handler had to be defined somewhere before we started this
task.

Asynchronous versus parallel programming
A very common misconception is that asynchronous and parallel
programming are the same, or that one is an implication of the other. This is
very common in JavaScript where, from the user's perspective, it looks like
things are running in parallel.

This isn't true, but many programming languages (in fact, just their
interpreters), create the illusion of running in parallel while they're still
sequential. They appear to be parallel due to it's event-based nature
(JavaScript), or because of their interpreter internals.

For example, Python simulates threads by switching the execution context
between different parts of the application. The Python interpreter is still
single threaded and executes instructions sequentially, but creates the illusion
of running code in parallel.

Functional programming
The functional programming paradigm treats program flow as an evaluation
of functions. It utilizes several concepts, where the most important for us are
eliminating side effects, avoiding mutable data, functions as first-class
citizens and higher-order functions. The output of each function is dependent
only on its input argument values, therefore, calling the same function twice
has to always return the same value. It's based on declarative programming,
in the sense of using expressions instead of statements.

Let's have a deeper look what this means:

Eliminating side effects: While in imperative programming side-effects
were desired during program execution, in functional programming it's
the exact opposite. Each function is supposed to be an individual
building block whose return value is based only on its input values. Note
that, in functional programming, it almost never makes sense to define a
function that takes no arguments and returns no value. Assuming that
functions have no side effects, this means that this function can't do
anything (or at least anything observable from the outside). This is in
contrast to imperative programming, where using such functions makes
sense because they can modify some internal state (of an object for
instance). Eliminating side effects leads to more independent and better
testable code.
Avoiding mutable data: The concept of not modifying any input values
and working with their copies works well with not creating any side
effects. Executing the same function with the same input parameters will
always return the same value.
First-class citizens and higher-order functions: In programming
languages, stating that type/object/function is a first-class citizen (or
first-class element) means that this entity supports operations generally
available to all other entities. Usually, this includes:

It can be passed as a parameter to functions
It can be returned from a function
It can be assigned to a variable

Higher-order functions have a very similar meaning and have to do at
least one of these:

Take a function as an argument
Return a function as a result

In functional programming, this concept of higher-order function is
often used in connection with methods on collections such as
map(), filter(), reduce(), concat(), and zip()

Functional programming in PHP
Let's step aside for a moment and see how the three concepts mentioned
above are related to PHP.

Eliminating side effects

This is mostly a matter of a good programming style and self-discipline. Of
course, PHP doesn't restrict us from violating this rule. Note that, by side
effects, we also mean use cases like the following:

function sum($array) {

 $sum = 0;

 foreach ($array as $value) {

 $sum += $value;

 }

 saveToDatabase($sum);

 return $sum;

}

sum([5, 1, 3, 7, 9]);

Even though we have not defined the function saveToDatabase() ourselves
(for example, it comes from a framework we are using), it's still a side effect.
If we execute the same function again, it will return the same value, but the
end state is different. For example, it will create the record in the database
twice.

Avoiding mutable data

This concept is simple with primitive data types, for example:

function add($first, $second) {

 return $first + $second;

}

add(5, 2);

However, when working with collections, this principle requires the creation
of a new collection and copying values from the old collection to the new
one:

function greaterThan($collection, $threshold) {

 $out = [];

 foreach ($collection as $val) {

 if ($val > $threshold) {

 $out[] = $val;

 }

 }

 return $out;

}

greaterThan([5, 12, 8, 9, 42], 8);

// will return: [12, 9, 42]

The preceding example shows this principle in practice.

In PHP, arrays are passed by reference for performance reasons until the first
attempt to modify them. Then the interpreter will create a copy of the original
array behind the scene (so called copy-on-write). However, objects are
always passed as references, so we'll have to be very careful when working
with them.

This concept of immutable collections (or objects in general) became very
popular in JavaScript with libraries such as Immutable.js, made by
Facebook (https://facebook.github.io/immutable-js/), or the so-called onPush
change detection mechanism in Angular2.

Apart from making our code more predictable, when it's used appropriately, it
will simplify checking for changes in large collections because, if any of its
items have changed, then the entire collection is replaced by a new instance.

In order to check if two collections contain the same data, we can use the
identity operator (=== three equal signs) instead of comparing the collections'
items one by one.

In PHP, there are already libraries that make this task easier, for instance,
Immutable.php (https://github.com/jkoudys/immutable.php). Also, for
example, PHP 5.5+ comes with an immutable version of DateTime class
called DateTimeImmutable by default.

First-class citizens and higher-order functions

https://facebook.github.io/immutable-js/
https://github.com/jkoudys/immutable.php

Now it starts to get interesting. Functions in PHP have been first-class
citizens for a very long time already. Moreover, since PHP 5.3+, we can use
anonymous functions, which greatly simplifies the usage of higher-order
functions.

Consider a very trivial example that applies a function on every item in a
collection with the built-in array_map() function:

$input = ['apple', 'banana', 'orange', 'raspberry'];

$lengths = array_map(function($item) {

 return strlen($item);

}, $input);

// $lengths = [5, 6, 6, 9];

We have used PHP's array_map() function to iterate the array and return the
length of each string. If we consider just this function call, it uses many of the
concepts from multiple paradigms that we have explained above:

array_map(function($item) {

 return strlen($item);

}, $input);

What this means in particular:

Single expression strlen($item) and no assignments (declarative
programming).
Implementation details on how the array is actually iterated are hidden
from us (declarative programming).
First-class citizens and higher-order functions (functional
programming).
Immutable data - this function call doesn't change the original, but
creates a new array (functional programming).
No side effects - everything happens inside the inner closure. If we used
any variables, they would exist only inside this closure (functional
programming).

Just for comparison, if we wanted to write the same example in imperative
programming, it would be just one line longer:

$result = [];

foreach ($input as $value) {

 $result[] = strlen($value);

}

Let's take this a little further, and say we want to get the sum of all lengths
greater than 5. First, we'll start with the most obvious imperative approach:

$input = ['apple', 'banana', 'orange', 'raspberry'];

$sum = 0;

foreach ($input as $fruit) {

 $length = strlen($fruit);

 if ($length > 5) {

 $sum += $length;

 }

}

// $sum = 21

printf("sum: %d\n", $sum);

Now, we can write the same thing using functional programming, utilizing
three methods we mentioned earlier: map, filter and reduce. In PHP, these are
called array_map(), array_filter(), and array_reduce() respectively:

$lengths = array_map(function($fruit) {

 return strlen($fruit);

}, $input);

$filtered = array_filter($lengths, function($length) {

 return $length > 5;

});

$sum = array_reduce($filtered, function($a, $b) {

 return $a + $b;

});

We got rid of all statements and used only expressions. The resulting code
isn't short, and we had to also create three variables to hold partially
processed arrays. So let's transform this into one large nested call:

$sum = array_reduce(array_filter(array_map(function($fruit) {

 return strlen($fruit);

}, $input), function($length) {

 return $length > 5;

}), function($a, $b) {

 return $a + $b;

});

This is a little shorter; we can see the sequence of functions applied and their
respective expressions in the same order. We've already encountered
inconsistency in function declarations in PHP, as shown in the following
code, which has been highly criticized:

array array_map(callable $callback, array $array1 [, $...])

array array_filter(array $array, callable $callback)

mixed array_reduce(array $array, callable $callback)

These are shortened function definitions from PHP documentation. We can
see that, sometimes the first argument is the iterated collection; sometimes it's
the callback function. The same problem exists with string functions and their
haystack-needle arguments. We can try to improve the readability a little with
functional-PHP library (https://github.com/lstrojny/functional-php) - a
collection of functions for functional programming in PHP.

The following code represents the same example as above, but uses
lstrojny/functional-php library:

use function Functional\map;

use function Functional\filter;

use function Functional\reduce_left;

$sum = reduce_left(filter(map($input, function($fruit) {

 return strlen($fruit);

}), function($length) {

 return $length > 5;

}), function($val, $i, $col, $reduction) {

 return $val + $reduction;

});

It definitely looks better, but this is probably the best we can get when using
standard PHP arrays.

Let's have a look at how the same problem could be solved in a language
where arrays are objects and map, filter and reduce are its methods.
Javascript, for example, is such a language, so we can rewrite the same
example from above one more time:

var sum = inputs

https://github.com/lstrojny/functional-php

 .map(fruit => fruit.length)

 .filter(len => len > 5)

 .reduce((a, b) => a + b);

Note

We'll use the new ES6 standard whenever we show any JavaScript code
throughout this entire book.

Well, this was quite easy and it meets all our expectations from functional
programming much better than PHP. This might be the reason why we almost
never use higher-order functions in PHP. They are just too hard to write, read
and maintain.

Before we move on, we should look at another topic related to functional
programming in PHP that is worth mentioning.

Anonymous functions in PHP

Every anonymous function is internally represented as an instance of a
Closure class, shown as follows (we'll also refer to anonymous functions as
closures or callables):

$count = function() {

 printf("%d ", count($this->fruits));

};

var_dump(get_class($count));

// string(7) "Closure"

What's unusual is that we can bind custom $this object when calling a
closure, a concept that is very common in JavaScript but very rarely used in
PHP.

Let's define a simple class that we'll use for demonstration:

class MyClass {

 public $fruits;

 public function __construct($arr) {

 $this->fruits = $arr;

 }

}

Then, test the function stored in $count variable on two objects:

// closures_01.php

// ... the class definition goes here

$count = function() {

 printf("%d ", count($this->fruits));

};

$obj1 = new MyClass(['apple', 'banana', 'orange']);

$obj2 = new MyClass(['raspberry', 'melon']);

$count->call($obj1);

$count->call($obj2);

This example prints to console the following output:

$ php closures_01.php

3

2

In PHP, we can specify what variables we want to pass from the parent scope
to the closure with the use keyword. Variables can be also passed by
reference, similar to passing variables by reference on function calls.
Consider the following example that demonstrates both principles:

// closures_03.php

$str = 'Hello, World';

$func = function() use ($str) {

 $str .= '!!!';

 echo $str . "\n";

};

$func();

echo $str . "\n";

$func2 = function() use (&$str) {

 $str .= '???';

 echo $str . "\n";

};

$func2();

echo $str . "\n";

We have two closures $func and $func2. The first one works with a copy

of $str so, when we print it outside of the function, it's unmodified.
However, the second closure, $func2 works with a reference to the original
variable. The output for this demo is as follows:

$ php closures_03.php

Hello, World!!!

Hello, World

Hello, World???

Hello, World???

We'll be passing objects to closures a lot in this book.

There's also a bindTo($newThis) method with a similar purpose. Instead of
evaluating the closure, it returns a new Closure object with $this binded
to $newThis, which can be later called with for example, call_user_func()
method. When using closures inside objects, the context $this is bind
automatically, so we don't need to worry about it.

Note

Anonymous functions and the Closure class are very well explained in the
official documentation, so head over there if you have any hesitations:
http://php.net/manual/en/functions.anonymous.php

PHP magic methods

PHP defines a set of names that can be used as class methods with a special
effect. These are all prefixed with two underscores __. For our purposes, we'll
be particularly interested in two of them, called __invoke() and __call().

The __invoke() method is used when we try to use an object as if it were a
regular function. This is useful when we use higher-order functions because
we can treat objects and functions exactly the same way.

The second __call() method is used when we attempt to call an object
method that doesn't exist (to be precise, a method that is inaccessible). It
receives as arguments the original method name and an array of its arguments
that was used when trying to call it.

http://php.net/manual/en/functions.anonymous.php

We'll use both of these magic methods in Chapter 2, Reactive Programming
with RxPHP.

The principles shown here aren't very common in PHP, but we'll meet them
on several occasions when using functional programming.

Note

Throughout this entire book, we'll try to follow PSR-1 and PSR-2 coding
standards (http://www.php-fig.org/psr/). However, we'll often violate them on
purpose to keep the source codes as short as possible.

Now, we'll finally grasp reactive programming.

http://www.php-fig.org/psr/

Reactive programming
Reactive programming is yet another programming paradigm. It is based
around the ability to easily express data flows and the automatic propagation
of changes.

Let's explore this in more depth:

Data flows (or data streams): In reactive programming, we want to think
about variables as "values that change over time". For example, this
could be a mouse position, user click or data coming via WebSockets.
Basically, any event-based system can be considered a data stream.
Propagation of change: A very nice example is a spreadsheet editor. If
we set the value of a single cell to A1 = A2 + A3, this means that every
change to cells A2 and A3 will be propagated to A1. In programmers'
speech, this corresponds to the observer design pattern where A2 and A3
are observables and A1 is an observer. We'll talk about the observer
pattern again later in this chapter.
Easily express data flows: This is related mostly to libraries we use
rather than to the language itself. It means that, if we want to use
reactive programming effectively, we need to be able to manipulate data
streams easily. This principle also suggests that reactive programming
falls under the category of declarative paradigms.

As we can see, the definition is very broad.

The first part about data flows and propagation of change looks like the
observer design pattern with iterables. Expressing data flows with ease could
be done with functional programming. This all basically describes what we've
already seen in this chapter.

The main differences to the observer pattern are how we think and
manipulate with data streams. In previous examples, we always worked with
arrays as inputs, which are synchronous, while data streams can be both
synchronous and asynchronous. From our point of view, it doesn't matter.

Let's see what a typical implementation of the observer pattern might look
like in PHP:

// observer_01.php

class Observable {

 /** @var Observer[] */

 private $observers = [];

 private $id;

 static private $total = 0;

 public function __construct() {

 $this->id = ++self::$total;

 }

 public function registerObserver(Observer $observer) {

 $this->observers[] = $observer;

 }

 public function notifyObservers() {

 foreach ($this->observers as $observer) {

 $observer->notify($this, func_get_args());

 }

 }

 public function __toString() {

 return sprintf('Observable #%d', $this->id);

 }

}

In order to be notified about any changes made by the Observable, we need
another class called Observer that subscribes to an Observable:

// observer_01.php

class Observer {

 static private $total = 0;

 private $id;

 public function __construct(Observable $observable) {

 $this->id = ++self::$total;

 $observable->registerObserver($this);

 }

 public function notify($obsr, $args) {

 $format = "Observer #%d got "%s" from %s\n";

 printf($format, $this->id, implode(', ', $args), $obsr);

 }

}

Then, a typical usage might look like the following:

$observer1 = new Observer($subject);

$observer2 = new Observer($subject);

$subject->notifyObservers('test');

This example will print two messages to the console:

$ php observer_01.php

// Observer #1 got "test" from Observable #1

// Observer #2 got "test" from Observable #1

This almost follows how we defined the reactive programming paradigm. A
data stream is a sequence of events coming from an Observable, and changes
are propagated to all listening observers. The last point we mentioned above -
being able to easily express data flows - isn't really there. What if we wanted
to filter out all events that don't match a particular condition, just like we did
in the examples with array_filter() and functional programming? This
logic would have to go into each Observer class implementation.

The principles of reactive programming are actually very common in some
libraries. We'll have a look at three of them and see how these relate to what
we've just learned about reactive and functional programming.

jQuery Promises
Probably every web developer has used jQuery at some point. A very handy
way of avoiding so-called callback hell is using Promises when dealing with
asynchronous calls. For example, calling jQuery.ajax() returns a Promise
object that is resolved or rejected when the AJAX call has finished:

$.get('/foo/bar').done(response => {

 // ...

}).fail(response => {

 // ...

}).complete(response => {

 // ...

});

A Promise object represents a value in the future. It's non-blocking
(asynchronous), but lets us handle it in a declarative approach.

Another useful use case is chaining callbacks, forming a chain, where each
callback can modify the value before propagating it further:

// promises_01.js

function functionReturningAPromise() {

 var d = $.Deferred();

 setTimeout(() => d.resolve(42), 0);

 return d.promise();

}

functionReturningAPromise()

 .then(value => value + 1)

 .then(value => 'result: ' + value)

 .then(value => console.log(value));

In this example, we have a single source which is the
functionReturningAPromise() call, and three callbacks where only the last
one prints the value that resolved the Promise. We can see that the number 42
was modified twice when going through the chain of callbacks:

$ node promises_01.js

result: 43

Note

In reactive programming, we'll use a very similar approach to Promises, but
while a Promise object is always resolved only once (it carries just one
value); data streams can generate multiple or even an infinite number of
values.

Gulp streaming build system
The Gulp build system has become the most popular build system in
JavaScript. It's completely based on streams and manipulating them. Consider
the following example:

gulp.src('src/*.js')

 .pipe(concat('all.min.js'))

 .pipe(gulp.dest('build'));

This creates a stream of files that match the predicate src/*.js, concats all
of them together and finally writes one single file to build/all.min.js.
Does this remind you of anything?

This is the same declarative and functional approach we used above, when
talking about functional programming in PHP. In particular, this concat()
function could be replaced with PHP's array_reduce().

Streams in gulp (aka vinyl-source-stream) can be modified in any way we
want. We can, for example, split a stream into two new streams:

var filter = require('gulp-filter');

var stream = gulp.src('src/*.js');

var substream1 = stream.pipe(filter(['*.min.js']));

var substream2 = stream.pipe(filter(['!/app/*']));

Or, we can merge two streams and uglify (minify and obfuscate the source
code) into one stream:

var merge = require('merge2');

merge(gulp.src('src/*.js'), gulp.src('vendor/*'))

 .pipe(uglify());

 .pipe(gulp.dest('build'));

This stream manipulation corresponds very well to the last concept we used
to define the reactive programming paradigm - express data flows with ease -
while it's both functional and declarative.

EventDispatcher component in PHP
Probably every PHP framework comes with some type of event-driven
component to notify various different parts of an application using events.

One such component comes with the Symfony framework out-of-the-box (
https://github.com/symfony/event-dispatcher). It's an independent
component that allows subscribing and listening to events (the observer
pattern).

Event listeners can be later grouped by the events they subscribe to and can
also be assigned custom tags, as shown in the following code:

use Symfony\Component\EventDispatcher\EventDispatcher;

$dispatcher = new EventDispatcher();

$listener = new AcmeListener();

$dispatcher->addListener('event_name', [$listener, 'action']);

This principle is very similar to Zend\EventManager used in Zend
Framework. It is just another variation of the Observable - observer
combination.

We'll come back to Symfony EventDispatcher component in Chapter 4 ,
Reactive vs a Typical Event-Driven approach, where we'll explore how to
apply the reactive programming approach to event-based systems, which
should lead to simplification and better-organized code.

https://github.com/symfony/event-dispatcher

Reactive Extensions
Now that we've seen that the principles in the reactive programming
paradigm aren't completely new for us, we can start thinking about how to
put all this together. In other words, what libraries or frameworks do we
really need in order to start writing reactive code.

Reactive Extensions (ReactiveX or just Rx in short) are a set of libraries in
various languages that make reactive programming easy even in languages
where concepts of asynchronous and functional programming are clumsy,
such as PHP. However, there's a very important distinction:

Reactive programming doesn't equal Reactive Extensions.

A Reactive Extension is a library that introduces certain principles as one of
the possible ways to approach reactive programming. Very often, when
somebody tells you they're using reactive programming to do something in
their applications, they're in fact talking about a particular Reactive Extension
library in their favorite language.

Reactive Extensions were originally made by Microsoft for .NET and called
Rx.NET. Later, it was ported by Netflix to Java as RxJava. Now, there are
over a dozen supported languages, the most popular probably being RxJS -
the JavaScript implementation.

All ports follow a very similar API design, however, differences occur and
we'll talk about them a couple of times. We'll be mostly interested in
differences between RxPHP and RxJS.

RxPHP is mostly uncharted territory. A more typical environment where we
encounter asynchronous events is JavaScript, so we'll first demonstrate
examples in JavaScript (and RxJS 5), and afterwards we will have a look at
RxPHP.

Autocomplete with RxJS
Imagine we want to implement an autocomplete feature that downloads
suggestions from Wikipedia (this example comes from the official collection
of demos on RxJS's GitHub page):

function searchAndReturnPromise(term) {

 // perform an AJAX request and return a Promise

}

var keyup = Rx.Observable.fromEvent($('#textInput'), 'keyup')

 .map(e => e.target.value)

 .filter(text => text.length > 2)

 .debounceTime(750)

 .distinctUntilChanged();

var searcher = keyup.switchMap(searchAndReturnPromise);

Let's take a closer look at how this works:

1. We create an Observable from the form input's keyup event. This
function is built into RxJS to simplify creating Observables. We can, of
course, create our own Observables as well.

2. Apply the map() function. This is exactly what we have already seen
above. Note that this map() function, is in fact, not Array.map(),
but Observable.map() instead, because we're not working with arrays
here.

3. Chain with filter() method. Exactly the same case as with map().
4. Method debounceTime() is used to limit propagating an event down the

stream only once after a period of time. In this case, we're using 750ms,
which means that, when the user starts typing, it won't download data
from Wikipedia on every keyup event, but only after at least a 750ms
delay between two events.

5. The distinctUntilChanged() method makes sure we're calling the
AJAX request only when the value has really changed from the last
time, because it makes no sense to download the same suggestions
twice.

6. The last statement with keyup.switchMap() guarantees that when
making multiple asynchronous calls, only the last one in the stream gets

processed. All the others are dismissed. This is important because, when
dealing with AJAX calls, we have absolutely no control over which
Promise resolves first.

If we didn't use RxJS, this feature would require multiple state variables. At
least to keep the last value from the input, the last time the event occurred,
and the last request value for the AJAX call. With RxJS, we can focus on
what we want to do and not worry about its implementation details
(declarative approach).

With Reactive Extensions, this approach fulfills all we described above about
reactive programming, functional programming and also, mostly, declarative
programming.

Mouse position on drag and drop
Let's have a look at a slightly more complicated example in RxJS. We want
to track the relative mouse position from where we start dragging an HTML
element, until we release it (mouseup event).

Pay attention to how this example combines multiple Observables (this
example also comes from the official collection of demos on RxJS's GitHub
page):

var mouseup = Rx.Observable.fromEvent(dragTarget, 'mouseup');

var mousemove = Rx.Observable.fromEvent(document, 'mousemove');

var mousedown = Rx.Observable.fromEvent(dragTarget, 'mousedown');

var mousedrag = mousedown.mergeMap(md => {

 var sX = md.offsetX, sY = md.offsetY;

 return mousemove.map(mm => {

 mm.preventDefault();

 return {left: mm.clientX - sX, top: mm.clientY - sY};

 }).takeUntil(mouseup);

});

var subscription = mousedrag.subscribe(pos => {

 dragTarget.style.top = pos.top + 'px';

 dragTarget.style.left = pos.left + 'px';

});

Notice that mousedrag is an Observable created by calling return
mousemove(...) and that it emits events only until a mouseup event is emitted
thanks to takeUntil(mouseup).

Normally, without RxJS and with a typical imperative approach, this would
be even more complicated than the previous example, with more state
variables.

Of course, this requires some basic knowledge of what functions are
available for Observables, but even without any previous experience, the
code should be reasonably easy to understand. Yet again, the implementation
details are completely hidden for us.

Introducing RxPHP
RxPHP (https://github.com/ReactiveX/RxPHP) is a port of RxJS. We're
going to be using Composer to handle all dependencies in our PHP projects.
It has become a state of the art tool, so if you haven't used it before,
download it first and check out some basic usage at https://getcomposer.org/
.

Then, create a new directory and initialize a composer project:

$ mkdir rxphp_01

$ cd rxphp_01

$ php composer.phar init

Fill in the required fields by the interactive wizard and then add RxPHP as a
dependency:

$ php composer.phar require reactivex/rxphp

When the library successfully downloads, composer will also create
autoload.php file to handle all class auto-loading on demand.

Then, our code will print string lengths of different types of fruit:

// rxphp_01.php

require __DIR__ . '/vendor/autoload.php';

$fruits = ['apple', 'banana', 'orange', 'raspberry'];

$observer = new \Rx\Observer\CallbackObserver(

 function($value) {

 printf("%s\n", $value);

 }, null, function() {

 print("Complete\n");

 });

\Rx\Observable::fromArray($fruits)

 ->map(function($value) {

 return strlen($value);

 })

 ->subscribe($observer);

https://github.com/ReactiveX/RxPHP
https://getcomposer.org/

Note

In all future examples, we won't include the autoload.php file, to keep the
examples as short as possible. However, it's obviously required in order to
run the examples. If you're unsure, have a look at the source codes provided
for each chapter.

We first created an observer - CallbackObserver to be precise - which takes
three functions as arguments. These are called on the next item in the stream,
on error and when the input stream is complete and won't emit any more
items.

The advantage of the CallbackObserver class is that we don't need to write a
custom observer class every time we want to handle incoming items in some
special and not very reusable way. With CallbackObserver, we can just
write the callables for signals we want to handle.

When we run this example, we'll see:

$ php rxphp_01.php

5

6

6

9

Complete

This example was very easy, but compared to the JavaScript environment, it's
not very common to use asynchronous operations in PHP and, in case we do
have to work asynchronously, it's probably something non-trivial. In Chapter
3, Writing a Reddit reader with RxPHP, we'll use Symfony Console
component to handle all user input from the command line and, where we
can, use similar principles to handling mouse events as we saw in the two
RxJS examples above.

The JavaScript examples work very well as examples of what reactive
programming using Reactive Extensions looks like and what its benefits are.

Note

If you want to know more about Reactive Extensions, head over to
http://reactivex.io/. Also, before continuing to the next chapter, you can have
a look at how many different operators Rx
supports http://reactivex.io/documentation/operators.html and how these can
be used in different languages.

http://reactivex.io/
http://reactivex.io/documentation/operators.html

RxPHP 1.x and RxPHP 2
As of April 2017, there're two versions of RxPHP.

The RxPHP 1.x is stable and requires PHP 5.5+. All examples in this book
are made for RxPHP 1.x, more specifically, RxPHP 1.5+. It's API is based
mostly on RxJS 4, but it takes some features from RxJS 5 as well.

There's also RxPHP 2 in development, which requires PHP 7.0+. RxPHP 2
API from the user's perspective is almost the same as 1.x, it just makes some
things easier (for example working with even loops, as we'll see in Chapter
6, PHP Streams API and Higher-Order Observables). When we encounter
any differences worth mentioning, we'll give them extra space.

Note

The newer RxPHP 2 was meant to be based to the PHP loop interoperability
specification (https://github.com/async-interop/event-loop). However, the
specification is still in pre-release stage and it won't be stable in the nearest
future. For this reason, the RxPHP team decided to leave the async-interop
support for future releases. For more information visit
https://github.com/ReactiveX/RxPHP/pull/150.

https://github.com/async-interop/event-loop
https://github.com/ReactiveX/RxPHP/pull/150

Summary
In this chapter, we tried to explain the common programming paradigms used
in most programming languages. These were: imperative, declarative and
functional programming. We also compared the meanings of asynchronous
and parallel code.

We spent some time on practical examples of functional programming in
PHP and its downsides, and we went through examples of some not very
common features, such as the Closure class.

Then, we examined the definition of reactive programming and how it's
related to all we saw previously in this chapter.

We introduced Reactive Extensions (Rx) as a library for one of the possible
approaches to reactive programming.

In two examples of RxJS, we saw what working with Reactive Extensions
looks like in practice and how this matches our definition of reactive
programming.

Finally, we introduced RxPHP, which we'll use throughout this entire book.
We also quickly talked about differences between RxPHP 1.x and RxPHP 2.

In the next chapter, we'll have a closer look at various parts of the RxPHP
library and talk more about the principles used in Reactive Extensions.

Chapter 2. Reactive Programming
with RxPHP
In this chapter, we're going to have a better look at how we can use PHP's
reactive extension library RxPHP. We'll mostly build on what we saw in the
previous chapter, but going into greater detail.

In particular, we'll go through the following:

Various components of RxPHP that we'll use in this and all further
chapters.
We'll quickly have a look at how to read and understand the Rx
documentation. In particular, we'll have a look at marble diagrams that
explain the functionality of Rx operators.
List a few basic operators that we'll use throughout the entire book and
explain their functionality.
Write custom operator that decodes JSON strings into their appropriate
array representations while properly handling errors.
Implement a simple script that downloads an HTML page via cURL.
Then compare the same approach when utilizing RxPHP.
How to write a custom Observable for our cURL example.
We'll dig into RxPHP's source code and see what happens when we use
built-in Observables and operators.

Before we look into each part of RxPHP separately, we'll quickly mention
some very common terms that we'll use when talking about various aspects of
Reactive Extensions.

Basic principles of Reactive
Extensions
Let's have a look at a very simple example of RxPHP, similar to what we did
in the previous chapter, and use it to demonstrate some of the basic principles
behind Reactive Extensions.

We won't bother with defining an observer right now and will focus only on
Observables and operators:

// rxphp_basics_01.php

use Rx\Observable;

$fruits = ['apple', 'banana', 'orange', 'raspberry'];

Observable::fromArray($fruits) // Observable

 ->map(function($value) { // operator

 return strlen($value);

 })

 ->filter(function($len) { // operator

 return $len > 5;

 })

 ->subscribe($observer); // observer

In this example, we have one Observable, two operators and one observer.

An Observable can be chained with operators. In this example, the operators
are map() and filter().

Observables have the subscribe() method that is used by observers to start
receiving values at the end of the chain.

We can represent this chain by the following diagram:

Each arrow shows the direction of propagation of items and notifications

We should probably explain the difference between using Observables and
just iterating the array.

Observables are like a push model, where a value is pushed down the
operator chain when it's ready. This is very important because it's the
Observable that decides when it should emit the next value. The internal logic
of Observables can do whatever it needs to (for example, it can run some
asynchronous task) and still remain completely hidden.

A similar concept to Observables are Promises. However, while a Promise
represents a single value that will exist in the future, an Observable represents
a stream of values.

On the other hand, iterating the array is like a pull model. We'd be pulling
one item after another. The important consequence is that we'd have to have
the array prepared beforehand (that's before we start iterating it).

Another important difference is that Observables behave like a data stream
(or data flow). We talked about streams in Chapter 1, Introduction to
Reactive Programming. In practice, this means that an Observable knows
when it has emitted all its items, or when an error has occurred and is able to
send proper notification down the chain.

For this reason, Observables can call three different methods on their
observers (we'll see how this is implemented later in this chapter when we
write a custom operator and a custom Observable):

onNext: This method is called when the next item is ready to be emitted.
We typically say that "an Observable emits an item".
onError: Notification called when an error has occurred. This could be
any type of error represented by an instance of the Exception class.
onComplete: Notification called when there're no more items to be

emitted.

Each Observable can emit zero or more items.

Each Observable can send one error, or one complete notification; but never
both.

This is why the CallbackObserver class we used in Chapter 1, Introduction
to Reactive Programming, takes three callables as arguments. These callables
are called when the observer receives a next item, on error notification or on
complete notification, respectively. All three callables are optional
parameters and we can decide to ignore any of them.

For example, we can make an observer like the following:

use Rx\Observer\Callback\Observer;

$observer = new CallbackObserver(

 function($value) {

 echo "Next: $value\n";

 },

 function(Exception $err) {

 $msg = $err->getMessage();

 echo "Error: $msg\n";

 },

 function() {

 echo "Complete\n";

 }

);

This observer defines all three callables. We can test it on the Observable we
defined above and have a look at its output:

$ php rxphp_basics_01.php

Next: 6

Next: 6

Next: 9

Complete

We can see that only three values passed the filter() operator, followed by
a proper complete notification at the end.

In RxPHP, every operator that takes a callable as an argument wraps its call
internally with try…catch block. If the callable throws Exception, then this
Exception is sent as onError notification. Consider the following example:

// rxphp_basics_02.php

$fruits = ['apple', 'banana', 'orange', 'raspberry'];

Observable::fromArray($fruits)

 ->map(function($value) {

 if ($value[0] == 'o') {

 throw new Exception("It's broken.");

 }

 return strlen($value);

 })

 ->filter(function($len) {

 return $len > 5;

 })

 ->subscribe($observer);

With the same observer that we defined previously, this example will have
the following output:

$ php rxphp_basics_02.php

Next: 6

Error: It's broken.

It's important to see that, when an error occurred, no more items were
emitted, there's also no complete notification. This is because, when the
observer received an error, it automatically unsubscribed.

We'll talk more about the process behind subscribing and unsubscribing in
Chapter 3, Writing a Reddit Reader with RxPHP, and in Chapter 10, Using
Advanced Operators and Techniques in RxPHP.

In Chapter 8, Multicasting in RxPHP and PHP7 pthreads Extension, we'll
look more in-depth into what happens inside observers when they receive
an error or complete notification.

One last thing before we move on. We said that Observables represent data
streams. The great advantage of this is that we can easily combine or split
streams, similar to what we saw in Chapter 1, Introduction to Reactive

Programming, when talking about the gulp build tool.

Let's have a look at a slightly more advanced example of merging two
Observables:

// rxphp_basics_03.php

$fruits = ['apple', 'banana', 'orange', 'raspberry'];

$vegetables = ['potato', 'carrot'];

Observable::fromArray($fruits)

 ->map(function($value) {

 return strlen($value);

 })

 ->filter(function($len) {

 return $len > 5;

 })

 ->merge(Observable::fromArray($vegetables))

 ->subscribe($observer);

We used the merge() operator to combine the existing Observable with
another Observable. Notice that we can add the operator anywhere we want.
Since we added it after the filter() operator and before the subscribe()
call, the items from the second Observable are going to be emitted right into
the observer and will skip the preceding operator chain.

We can represent this chain by the following diagram:

The output for this example looks like the following:

$ php rxphp_basics_03.php

Next: 6

Next: 6

Next: 9

Next: potato

Next: carrot

Complete

These principles apply to all Rx implementations. Now, we should have a
basic idea of what working with Observables, observers and operators in Rx
looks like and we can talk more about each of them separately.

Naming conventions in Reactive
Extensions
When talking about Observables, we use terms such as emit/send
value/item. Commonly, we say that an Observable emits an item, but we
understand the same from an Observable sends a value as well.

By emit/send we mean that an Observable is calling the onNext method on
an observer.

When talking about Observables, we use terms such as send error/complete
notification/signal. We also often mention that an Observable completes,
which means that an Observable has sent a complete notification.

By notification/signal we mean that an Observable is calling the onError
or onComplete method on an observer.

In the preceding paragraph, we worked with a simple RxPHP demo that had
one Observable, two operators and one observer.

This structure formed an operator/Observable chain. We'll understand the
same thing from both of the terms operator chain and Observable chain
(sometimes also referred to as a chain of Observable operators). This is
because, from our perspective, we're chaining operators; but under the hood,
each operator returns another instance of the Observable class, so, in fact,
we're chaining Observables. In practice, this doesn't matter, so we'll just
remember that these have the same meaning.

When talking about Observable chains, we sometimes use the term source
Observable. This is the source of items in the chain. In other words, it's the
first Observable in the chain. In the preceding example, the source
Observable was Observable::fromArray($fruits).

When talking about operators, we use the term source Observable to also
describe the Observable directly preceding this particular operator (because

it's the source of items for this operator).

Sometimes instead of the onNext, onError and onComplete terms and
method names, you'll encounter just next, error and complete. This comes
from RxJS 5, which follows the ES7 Observable specification (
https://github.com/tc39/proposal-observable), but their meaning is exactly
the same. Most Rx implementations use the names onNext, onError
and onComplete.

All these terms are used in various literature and articles regarding Rx, so
we'll tolerate all of them.

https://github.com/tc39/proposal-observable

Components of RxPHP
Since this chapter is going to be mostly about Observables, observers and
operators, we're going to start with them.

We've already seen a sneak peak in this chapter, and now we'll go into more
detail.

Observables
Observables emit items. In other words, Observables are sources of values.
Observers can subscribe to Observables in order to be notified when the next
item is ready, all items have been emitted, or an error has occurred.

The main difference between an Observable (in the sense of reactive
programming) and the observer pattern is that an Observable can tell you
when all of the data has been emitted and when an error occurs. All three
types of events are consumed by observers.

RxPHP comes with several basic types of Observables for general usage.
Here are a few that are easy to use:

ArrayObservable: This creates an Observable from an array and emits
all values right after the first observer subscribes.
RangeObservable: This generates a sequence of numbers from a
predefined range.
IteratorObservable: This iterates and emits each item in the iterable.
This can be any array wrapped as Iterator. Consider the following
example, where we iterate an array instead of using ArrayObservable:

 $fruits = ['apple', 'banana', 'orange',

'raspberry'];

 new IteratorObservable(new ArrayIterator($fruits));

Note that this also includes generators. Consider another example with
an anonymous function and yield keyword.

 $iterator = function() use ($fruits) {

 foreach ($fruits as $fruit) {

 yield $fruit;

 }

 };

 new IteratorObservable($iterator())

 ->subscribe(new DebugSubject());

Calling the $iterator()function returns an instance of a Generator class
that implements the Iterator interface. However, these basic Observables are

good mostly for demonstration purposes and are not very practical in real-
world usage. In a PHP environment, we can't create Observables from mouse
events as in JavaScript and RxJS, so we'll have to learn how to write custom
Observables very soon in this chapter in order to create some real-world
examples. In Chapter 3, Writing a Reddit Reader with RxPHP, we'll learn
about the Observable::create() static method to create Observables with
some basic custom logic. But, more on that later.

Observables can be divided into two groups based on when they start
emitting values:

Hot: In this group, values are emitted even when there are no observers
subscribed. This is, for example, Rx.Observable.fromEvent from RxJS
that we used in Chapter 1 , Introduction to Reactive Programming. This
creates an Observable from any JavaScript event. Values are emitted
immediately, so when you subscribe to this Observable some time later,
you receive only new values and no previously emitted values.
Cold: In this group, values are emitted when at least one observer has
been subscribed. This is, for example, RxPHP's ArrayObservable. It
creates an Observable and, every time we subscribe, we receive all
values passed as an input to the fromArray() method.

All built-in Observables in RxPHP can be instantiated easily by calling static
methods from the Rx\Observable namespace. The following list represents
the three Observables mentioned above:

The RxObservable::fromArray() method
returns Rx\Observable\ArrayObservable
The RxObservable::range() method
returns Rx\Observable\RangeObservable
The RxObservable::fromIterator() method
returns Rx\Observable\IteratorObservable

Don't be surprised that static method names don't necessarily match returned
class names. Also, it's usually easier to use static calls than to instantiate
Observables directly.

Observers
Observers are consumers of Observables. In other words, observers react to
Observables. We've already seen the CallbackObserver class, which takes
three optional arguments representing callables for each type of signal.

Consider a similar example that we used at the end of Chapter 1
, Introduction to Reactive Programming, where we defined our observer:

$observer = new Rx\Observer\CallbackObserver(function($value) {

 printf("%s\n", $value);

}, function() {

 print("onError\n");

}, function() {

 print("onCompleted\n");

});

The CallbackObserver class lets us create a custom observer without
necessarily extending the base class. Its constructor takes three optional
arguments:

onNext: This callable is called when a new item from the source
Observable is emitted. This is the most common callback we'll use.
onComplete: This callable is called when there are no items left and the
Observable is done emitting items. Some Observables produce
an infinite number of items and this callback is never called.
onError: This callable is called when an error has occurred somewhere
in the chain.

We can write the same example in a more reusable form to quickly test
what's going on inside Observable chains:

// rxphp_03.php

$fruits = ['apple', 'banana', 'orange', 'raspberry'];

class PrintObserver extends Rx\Observer\AbstractObserver {

 protected function completed() {

 print("Completed\n");

 }

 protected function next($item) {

 printf("Next: %s\n", $item);

 }

 protected function error(Exception $err) {

 $msg = $err->getMessage();

 printf("Error: %s\n", $msg);

 }

}

$source = Rx\Observable::fromArray($fruits);

$source->subscribe(new PrintObserver());

When extending AbstractObserver, the methods we need to implement
are completed(), next(), and error(), with the same functionality as
described previously.

We're using the subscribe() method to subscribe an observer to an
Observable.

There's also the subscribeCallback() method that takes just three callables
as arguments. Since RxPHP 2, the subscribeCallback() method is
deprecated and its functionality has been merged with subscribe().

This means that, in RxPHP 2, we can also write the following code:

$source->subscribe(function($item) {

 printf("Next: %sn", $item);

});

We made a single callable instead of subscribing with an observer. This
handles only onNext signals.

Singles
Singles are like Observables; the only difference is that they always emit just
one value. In RxPHP, we don't distinguish any difference between
Observables and Singles, so we can use the Observable::just() static
method:

// single_01.php/

require __DIR__ . '/PrintObserver.php';

RxObservable::just(42)

 ->subscribe(new PrintObserver());

This creates a new Observable that calls onNext() with the value 42, and
immediately after that onComplete(). The output for this very simple
example is the following:

$ php single_01.php

Next: 42

Completed

Similar to the preceding explanation, calling RxObservable::just() static
method returns an instance of Rx\Observable\ReturnObservable.

Note

The term "Single" was used mostly in RxJS 4. Since RxPHP was originally
ported from RxJS 4, and later also took things from RxJS 5, you might
encounter this term sometimes. If you're familiar only with RxJS 5, then
you've probably never heard of it. Nonetheless, we'll always refer to all
sources of values as Observables, even when they emit just a single, or no
value at all.

Subject
The Subject is a class that acts as an Observable and observer at the same
time. This means that it can subscribe to an Observable just like an observer,
and also emit values like an Observable does. Eventually, it can also emit its
own values independently of its source Observable.

In order to see how the Subject class can be used in different situations, we'll
work through three examples based on the same example we used at the
beginning of this chapter.

We can use a Subject class instead of an Observable. However, we need to
emit items manually by calling onNext() on the Subject instance:

// subject_01.php

use Rx\Subject\Subject;

$subject = new Subject();

$subject

 ->map(function($value) {

 return strlen($value);

 })

 ->filter(function($len) {

 return $len > 5;

 })

 ->subscribe(new PrintObserver());

$subject->onNext('apple');

$subject->onNext('banana');

$subject->onNext('orange');

$subject->onNext('raspberry');

This code produces the same output as the original example with Observable:

$ php subject_01.php

Next: 6

Next: 6

Next: 9

Another use case could be using Subject to subscribe to an Observable.
We'll reuse the PrintObserver class we made a moment ago to print all of

the items and notifications that went through the Subject instance:

// subject_02.php

use Rx\Subject\Subject;

use Rx\Observable;

$subject = new Subject();

$subject->subscribe(new PrintObserver());

$fruits = ['apple', 'banana', 'orange', 'raspberry'];

Observable::fromArray($fruits)

 ->map(function($value) {

 return strlen($value);

 })

 ->filter(function($len) {

 return $len > 5;

 })

 ->subscribe($subject);

Notice that we subscribed PrintObserver to the Subject and then subscribed
the Subject at the end of the operator chain. As we can see, by default
the Subject class just passes through both items and notifications. The output
is the same as in the previous example.

The final situation we want to demonstrate is using an instance of Subject in
the middle of an operator chain:

// subject_03.php

use Rx\Subject\Subject;

use Rx\Observable;

$fruits = ['apple', 'banana', 'orange', 'raspberry'];

$subject = new Subject();

$subject

 ->filter(function($len) {

 return $len > 5;

 })

 ->subscribe(new PrintObserver());

Observable::fromArray($fruits)

 ->map(function($value) {

 return strlen($value);

 })

 ->subscribe($subject);

Yet again, the console output is the same.

Later in this chapter, we'll write the DebugSubject class, that we'll use many
times throughout this book, to quickly see what's going on in our Observable
chains.

Disposable
All Rx implementations internally use the Dispose pattern. This design
decision has two reasons:

To be able to unsubscribe from an Observable
To be able to release all data used by that Observable

For example, if we had an Observable that downloads a large file from the
Internet and saves it to a temporary location until it's completely downloaded,
we'd like to remove the temporary file if its observer unsubscribed, or any
error occurred.

There're already a couple of classes available out-of-the-box with RxPHP,
each with a different purpose. We don't need to worry about Disposables
right now. We'll have a look at how they are used inside built-in Observables
and operators in the next Chapter 3, Writing a Reddit Reader with RxPHP.

Note

You can read more about the dispose pattern on Wikipedia
https://en.wikipedia.org/wiki/Dispose_pattern or, more specifically, why it's
used in reactive extensions on StackOverflow
http://stackoverflow.com/a/7707768/310726 .

However, it's good to know that something like releasing resources in Rx is
important and we need to aware of it.

https://en.wikipedia.org/wiki/Dispose_pattern
http://stackoverflow.com/a/7707768/310726

Scheduler
Observables and operators usually don't execute their work directly, but use
an instance of the Scheduler class to decide how and when it should be
executed.

In practice, a Scheduler receives an action as an anonymous function and
schedules its execution according to its internal logic. This is particularly
relevant to all Observables and operators that need to work with time. For
example, all delayed or periodical emissions need to schedule via a
Scheduler.

In languages such as JavaScript, this is relatively simple with, for example,
the setTimeout() function and the event-based nature of JavaScript
interpreters. However, in PHP, where all code is executed strictly
sequentially, we'll have to use an event loop.

In most situations in RxPHP, we don't have to even worry about Schedulers
because, if not set differently, all Observables and operators internally use the
ImmediateScheduler class, which executes all actions immediately without
any further logic.

We'll encounter Schedulers once more at the end of this chapter, when talking
about event loops.

In Chapter 6, PHP Streams API and Higher-Order Observables, we'll go into
much more detail about event loops in PHP. We'll also talk about the Event
Loop Interopability specification (https://github.com/async-interop/event-
loop) and how it's related to RxPHP.

Note

In RxPHP 2, using Schedulers has been significantly simplified and, most of
the time, we don't need to worry about event loops at all, as we'll see in
Chapter 6, PHP Streams API and Higher-Order Observables.

https://github.com/async-interop/event-loop

Operators
We've used operators already without any further explanation, but now that
we know how to use Observables, observers, and Subjects, it's time to see
how operators glue this all together.

The core principle of Rx is using various operators to modify data flow.
Typically, an operator returns another Observable and therefore allows the
chaining of operator calls.

In Rx, there are tons of operators, and in RxPHP in particular, there are about
40 already. Other implementations such as RxJS have even more. Those
include all we saw in the previous chapter when talking about functional
programming, such as map(), filter(), and a lot more. This also includes
operators for very specific use cases, such as merge(), buffer(), or retry(),
just to name a few.

The process of creating operator chains is a little more complicated under the
hood than it seems. We don't need to worry about it for now because we'll
talk about it again in Chapter 3, Writing a Reddit Reader with RxPHP. Before
we start using more advanced operators in practice, we should have a look at
how each operator is described in the documentation. This is mostly because
some functionality isn't obvious at first sight and, when it comes to
asynchronous events, it's sometimes hard to understand what each operator
does.

Understanding the operator diagrams

Each operator is described in the documentation using a diagram called the
marble diagram, where each marble represents an emitted value.

The filter() operator

First, we'll have a look at how the filter() operator is defined. We used the
PHP function array_filter() in the previous chapter, so we know that it
takes values and a predicate function as input. Then it evaluates each value
with the predicate and, based on whether it returns true or false, it adds or

skips the value in its response array. The behavior of the filter() operator is
the same, it just works with data flows instead of arrays. This means it
receives items from its source (the preceding Observable) and propagates
them to its consequent observer (or chained operator).

Using a marble diagram, it will look like the following figure:

Marble diagram representing the filter() Operator from
http://reactivex.io/documentation/operators/filter.html

Let's exaplain this diagram in more detail:

At the top and bottom, we have two timelines that represent
Observables. The arrow in the top right corner suggests that time goes
from left to right.
We can think of everything above the rectangle as input Observable and
everything below the rectangle as output Observable. There're usually
one or more input and only one output.
Each circle (marble) represents a single value in time emitted by its
respective Observable. The number inside each circle stands for its
value. All values are ordered by the time they were emitted, which goes
from left to right. Different colors are used to make it obvious that

values at the top and bottom are the same (for example the blue "30" at
the top is the same value as the bottom "30").
The rectangle in the middle represents the transformation between the
top and bottom Observables. Its functionality is usually described in
words or pseudocode. In this case, we have an expression that looks like
ES6 syntax, which says that it returns true if x is greater than 10.
Rewritten to PHP, it's equal to the following:

 function($x) {

 return $x > 10;

 }

The bottom line, therefore, only contains circles with a value greater
than 10.
Vertical lines on the right side of each line mark the point where these
Observables complete. This means they have emitted all values and sent
an onComplete notification. The filter() operator has no effect on
the onComplete notification, so both Observables end at the same time.

This was pretty simple. Marble diagrams are a very comfortable way of
representing data flows without worrying about implementation details (this
reminds us of declarative programming, as we defined it in the first chapter,
doesn't it?).

In some diagrams, you can also see a cross sign on the timeline, which
represents an error (an onError notification to be precise). We'll see further
on in this chapter that we can work with onComplete and onError
notifications just as with onNext.

The debounceTime() operator

Let's have a look at another diagram. This time we have a debounceTime()
operator from RxJS 5, which we saw in the first chapter, in the Autocomplete
with RxJS example:

Marble diagram representing the debounceTime() operator from
http://reactivex.io/documentation/operators/debounce.html

In the rectangle in the middle, we don't have any pseudocode this time; just a
single expression debounceTime(20). Well, in order to figure out what it
does, we need to look at the documentation, or try to analyze the diagram.

When the debounceTime() operator receives a value, it waits a certain
interval before reemitting it. If any other values arrive before the interval
expires, the original value is discarded and the later value is used instead; the
interval is restarted as well. This can go on for an infinite number of values.

The diagram exactly describes the previous paragraph:

First, value a arrives. The transformation function waits until 20ms
interval expires, and after that, the operator reemits the value further.
The interval is represented by shifting the bottom values on the timeline
slightly to the right. As we said previously, the horizontal lines represent
values in time. When the bottom circle, labeled a, is shifted to the right,
it means this event happened after the top a circle.
Then, two more values arrive, both of them in a very short time. The
first one is discarded, but after the second one, there's another longer

time gap, so only the second value gets reemitted.
The process with the last value d is analogous to the first one.

This operator is useful when we know we can ignore some events that occur
quickly after one another. A prime example is using debounceTime() for
autocomplete features when we want to start searching after a user has
stopped typing a keyword.

The concat operator

Now we can have a look at a slightly more complicated operator, which is
concat(). Look at the following diagram and try to guess what it does:

Marble diagram representing the concat() operator from
http://reactivex.io/documentation/operators/concat.html

Let's analyze this together before looking to the documentation:

At the top, we have two Observables as inputs to the operator.

Both Observables should emit a value at the same time, but only the
value from the first Observable is passed through. The same applies for
the second and third values as well.
Then the first Observable reaches the end and sends an onComplete
notification.
Right after that, the operator starts emitting values from the second
Observable.

The concat() operator merges multiple Observables into one. It internally
subscribes to each input Observable in order, one after another. This means
that, when the first Observable completes, it subscribes to the next one. It's
important to know that there's only ever one source Observable subscribed at
a time (we'll work with concat() and a similar merge() operator in Chapter
4, Reactive versus a typical Event-Driven Approach).

In other words, the concat() operator concatenates multiple data streams into
a single stream.

In the first chapter, we talked about functional programming and how most
principles are the same in reactive programming. Implementing such a
feature would be rather complicated because there's no built-in PHP function
designed to deal with such a use case.

If we go back to the first chapter once more, we said that one key concept of
reactive programming is to "express data flows with ease". This operator
shows what that means in action.

Other common operators

These were only three operators out of more than 40 available in RxPHP.
Apart from very simple ones like filter() and map(), there're also more
sophisticated ones. We've seen concat() already, but here are a few
interesting ones that we'll use in further chapters:

buffer(): This operator has multiple variants, but all of them collect
received values and reemits them in groups of a predefined size. For
example, we can create groups of three items as follows:

 Rx\Observable::range(1, 4)

 ->bufferWithCount(3)

 ->subscribe(new DebugSubject());

Which prints the following output:

 13:58:13 [] onNext: [1, 2, 3] (array)

 13:58:13 [] onNext: [4] (array)

 13:58:13 onCompleted

Note

Note that the last array contains just one value because the Observable
sent an onComplete notification.

merge(): This operator merges all input Observables into a single output
Observable, reemitting all values immediately (in contrast to concat()).
distinct(): This operator reemits only those values that haven't passed
this operator before.
take(): This operator reemits only a set number of values that arrive to
the operator first, then sends an onComplete notification.
retry(): When source Observable sends onError, this operator tries to
resubscribe automatically. You can also tell it to retry only a limited
number of times until signaling onError (we'll use this operator in
Chapter 4, Reactive versus a Typical Event-Driven Approach).
catchError(): This operator lets us continue by subscribing to another
Observable returned from its callback when an onError notification
occurs.
toArray(): This operator collects all items from its source Observable
and reemits them as a single array when the source Observable
completes.
timeout(): This operator sends an onError notification if no values
arrived within a certain time span.

Enough theory; let's start writing our first custom class, which we'll utilize a
few times throughout this book.

Writing the DebugSubject class
One common use case for Subject class is proxying all values and
notifications from its source Observable.

In one of the preceding paragraphs, we wrote the PrintObserver class, which
prints all values it receives. However, a more common situation is where we
want to output values from an Observable while being able to chain it with
another operator or observer. The Subject class exactly fits this use case, so
we'll rewrite the preceding PrintObserver class and inherit Subject instead
of AbstractObserver:

class DebugSubject extends Rx\Subject\Subject {

 public function __construct($identifier=null, $maxLen=64){

 $this->identifier = $identifier;

 $this->maxLen = $maxLen;

 }

 public function onCompleted() {

 printf("%s%s onCompleted\n", $this->getTime(), $this->id());

 parent::onCompleted();

 }

 public function onNext($val) {

 $type = is_object($val) ? get_class($val) : gettype($val);

 if (is_object($val) && method_exists($val, '__toString')) {

 $str = (string)$val;

 } elseif (is_object($val)) {

 $str = get_class($val);

 } elseif (is_array($val)) {

 $str = json_encode($val);

 } else {

 $str = $val;

 }

 if (is_string($str) && strlen($str) > $this->maxLen) {

 $str = substr($str, 0, $this->maxLen) . '...';

 }

 printf("%s%s onNext: %s (%s)\n",

 $this->getTime(), $this->id(), $str, $type);

 parent::onNext($value);

 }

 public function onError(Exception $error) {

 $msg = $error->getMessage();

 printf("%s%s onError (%s): %s\n", $this->getTime(),$this->

 $this->id(), get_class($error), $msg);

 parent::onError($error);

 }

 private function getTime() {

 return date('H:i:s');

 }

 private function id() {

 return ' [' . $this->identifier . ']';

 }

}

This DebugSubject class prints all values, their types, and the time they were
received by the DebugSubject. It also allows us to set a unique identifier for
each DebugSubject instance to be able to distinguish their output. We're
going to use this class a couple of times throughout this book to quickly see
what's going on inside our Observable chains.

Then, using this class is just like using any other observer:

// rxphp_04.php

$fruits = ['apple', 'banana', 'orange', 'raspberry'];

$observer = Rx\Observable::fromArray($fruits)

 ->subscribe(new DebugSubject());

The output in the console is as follows:

$ php rxphp_04.php

17:15:21 [] onNext: apple (string)

17:15:21 [] onNext: banana (string)

17:15:21 [] onNext: orange (string)

17:15:21 [] onNext: raspberry (string)

17:15:21 [] onCompleted

Chaining Subjects and operators works just as with Observables:

// rxphp_05.php

$subject = new DebugSubject(1);

$subject

 ->map(function($item) {

 return strlen($item);

 })

 ->subscribe(new DebugSubject(2));

$observable = Rx\Observable::fromArray($fruits);

$observable->subscribe($subject);

In this example, we first created an instance of DebugSubject, then we
chained it with the map() operator, which returns the lengths of each item.
Finally, we subscribed another DebugSubject that will print only numbers
because it's placed after map(). Then we created an Observable from an array
(we've seen this static method previously), which is going to be the source
emitting all items. The result is as follows:

17:33:36 [1] onNext: apple (string)

17:33:36 [2] onNext: 5 (integer)

17:33:36 [1] onNext: banana (string)

17:33:36 [2] onNext: 6 (integer)

17:33:36 [1] onNext: orange (string)

17:33:36 [2] onNext: 6 (integer)

17:33:36 [1] onNext: raspberry (string)

17:33:36 [2] onNext: 9 (integer)

17:33:36 [1] onCompleted

17:33:36 [2] onCompleted

Note that the order of messages matches our assumption that the source
Observable emits one value at a time, which is propagated through the entire
chain.

Note

There's one important side effect of using Subjects as we did that isn't very
obvious. Since we subscribe it to the preceding Observable, it turns it from
"cold" into "hot", which might be unwanted in some use cases.

RxPHP provides a series of operators all starting with the "doOn" prefix that
are intended to be placed inside the operator chain to execute side effects
without subscribing to an Observable. We'll have a better look at them in
Chapter 5, Testing RxPHP Code.

Writing JSONDecodeOperator
We're going to work with calls to remote API's a few times throughout this
book, so it would be very handy to have an operator that transforms JSON
string responses into their PHP array representations.

This example looks like something that could be easily done with just
the map() operator:

// rxphp_06.php

Rx\Observable::just('{"value":42}')

 ->map(function($value) {

 return json_decode($value, true);

 })

 ->subscribe(new DebugSubject());

This prints the correct result for sure, as we can see in the following output:

$ php rxphp_06.php

16:39:50 [] onNext: {"value": 42} (array)

16:39:50 [] onCompleted

Well, but what about malformed JSON strings? What happens if we try to
decode the following:

Rx\Observable::just('NA')

 ->map(function($value) {

 return json_decode($value, true);

 })

 ->subscribe(new DebugSubject());

The function json_decode() doesn't throw an exception when trying to
process an invalid JSON string; it just returns null:

15:51:06 [] onNext: (NULL)

This is probably not what we want. If the JSON string is invalid, then
something is wrong because this situation should never happen and we want
to send an onError notification.

If we wanted to know any further information about which error occurred,
we'd have to call json_last_error(). So, this is a perfect opportunity to
write a custom operator that decodes JSON strings that, if any error occurs,
will send an onError.

All operators implement the OperatorInterface and __invoke() method.
This so-called "magic" method is supported from PHP 5.3+ and allows the
use of objects as functions:

// __invoke.php

class InvokeExampleClass {

 public function __invoke($x) {

 echo strlen($x);

 }

}

$obj = new InvokeExampleClass();

$obj('apple');

var_dump(is_callable($obj));

When class implements __invoke(), it's automatically considered as callable
as well:

$ php __invoke.php

int(5)

bool(true)

Writing operators is very similar. A stub for our class will look like the
following:

// JSONDecodeOperator.php

use Rx\ObservableInterface as ObservableI;

use Rx\ObserverInterface as ObserverI;

use Rx\SchedulerInterface as SchedulerI;

use Rx\Operator\OperatorInterface as OperatorI;

class JSONDecodeOperator implements OperatorI {

 public function __invoke(ObservableI $observable,

 ObserverI $observer, SchedulerI $scheduler = null) {

 // ...

 }

}

Method __invoke() takes three arguments and returns a Disposable object.
Right now, we'll use just the first two and not worry about the $scheduler:

ObservableInterface $observable: This is our input Observable that
we'll subscribe to
ObserverInterface $observer: This is where we'll emit all output
values from this operator

We'll follow almost the same principle as when writing a custom Subject
class. We're going to use CallbackObserver to subscribe to the Observable
and perform all of our logic:

class JSONDecodeOperator implements OperatorI {

 public function __invoke(ObservableI $observable,

 ObserverI $observer, SchedulerI $scheduler = null) {

 $obs = new CallbackObserver(

 function ($value) use ($observer) {

 $decoded = json_decode($value, true);

 if (json_last_error() == JSON_ERROR_NONE) {

 $observer->onNext($decoded);

 } else {

 $msg = json_last_error_msg();

 $e = new InvalidArgumentException($msg);

 $observer->onError($e);

 }

 },

 function ($error) use ($observer) {

 $observer->onError($error);

 },

 function () use ($observer) {

 $observer->onCompleted();

 }

);

 return $observable->subscribe($obs, $scheduler);

 }

}

There're a few interesting things to notice:

When onError or onComplete notifications occur, we just pass them

along without any further logic.
The operator can send any signal any time it wants.
Inside CallbackObserver class's onNext closure, we check whether any
error occurred while decoding the input JSON string coming from the
source Observable using json_last_error().
The operator has full access to the source Observable.
The operator can emit values independently on values from the source
Observable.

In order to use our operator, we have to use the Observable::lift(),
method which takes a Closure as an argument that needs to return an instance
of an operator (this function is a so-called operator factory):

// rxphp_07.php

Rx\Observable::just('{"value":42}')

 ->lift(function() {

 return new JSONDecodeOperator();

 })

 ->subscribe(new DebugSubject());

Using custom operators was significantly simplified in RxPHP 2, but using
the lift() method is universal and works in both versions of RxPHP.

Valid JSON string is decoded as expected:

$ php rxphp_07.php

17:58:49 [] onNext: {"value": 42} (array)

17:58:49 [] onCompleted

On the other hand, the same invalid JSON string that we used above doesn't
call onNext, but onError instead. It sends this notification with an instance
of InvalidArgumentException class and the error message
from json_last_error_msg(), as shown in the following output:

17:59:25 onError (InvalidArgumentException): Syntax error

As usual, we're going to reuse this class throughout this book. The next
chapter is going to work with remote APIs a lot, so this operator is going to
be very handy.

Simplifying propagation of notifications
In the JSONDecodeOperator class, we didn't want to modify either onError
nor onComplete notifications and we just passed them along. However,
there's an easier way to do this thanks to how PHP works with callables. A
valid callable is also an array with two items: an object and a method name.

This means we can rewrite the above CallbackObserver instantiation as
follows:

$callbackObserver = new CallbackObserver(

 function ($value) use ($observer) {

 // ...

 },

 [$observer, 'onError'],

 [$observer, 'onCompleted']

);

The functionality is exactly the same. Instead of creating an anonymous
function for each notification, we can just pass the callable directly.

Using custom operators in RxPHP 2
In Chapter 1, Introduction to Reactive Programming, we mentioned a
magic __call() method. RxPHP 2 uses this method to allow the use of
custom operators by auto-discovering them in two namespace formats.

The first option is defining our operator class in the Rx\Operator namespace:

// JSONDecodeOperator.php

namespace Rx\Operator;

use Rx\ObservableInterface as ObservableI;

use Rx\ObserverInterface as ObserverI;

use Rx\Operator\OperatorInterface as OperatorI;

use Rx\DisposableInterface as DisposableI;

class JSONDecodeOperator implements OperatorI {

 public function __invoke(ObservableI $observable,

 ObserverI $observer): DisposableI {

 return $observable->subscribe(

 function ($value) use ($observer) {

 $decoded = json_decode($value, true);

 if (json_last_error() == JSON_ERROR_NONE) {

 $observer->onNext($decoded);

 } else {

 $msg = json_last_error_msg();

 $e = new InvalidArgumentException($msg);

 $observer->onError($e);

 }

 },

 [$observer, 'onError'],

 [$observer, 'onCompleted']

);

 }

}

It's the same JSONDecodeOperator class, just updated for RxPHP 2. Using
this operator is, then, very simple:

Observable::just('{"value":42}')

 ->JSONDecode()

 ->subscribe(new DebugSubject());

Since our operator resides under the Rx\Operator namespace, it's expanded
by the __call() method to Rx\Operator\JSONDecodeOperator. This
means we don't need to use the lift() method at all.

Another way is to prefix the operator name and namespace with underscores
_ which are then merged into a full class name. This means we can put all
application specific operators under a custom namespace:

// JSONDecodeOperator.php

namespace MyApp\Rx\Operator;

...

class JSONDecodeOperator implements OperatorI { ... }

Now we can use the operator as follows:

Observable::just('{"value":42}')

 ->_MyApp_JSONDecode()

 ->subscribe(new DebugSubject());

Writing CURLObservable
As we said, we're going to work with API calls and, for this reason, we need
a comfortable way of creating HTTP requests. It's probably no surprise that
we'll write a custom Observable that downloads a URL and passes it's
response to its observers, where we'll decode it from JSON using the operator
we created just a couple of lines above.

We're going to use PHP's cURL module, which is a wrapper around libcurl (
https://curl.haxx.se/libcurl/) - a C library for transferring data via any
protocols imaginable.

We'll start by using plain simple cURL in PHP and we'll see that it supports
some sort of asynchronous approach out-of-the-box.

https://curl.haxx.se/libcurl/

Imperative approach and cURL
If we just wanted to download a single URL, we wouldn't need anything
special. However, we want to make this, and all future applications of
CURLObservable class, more interactive, so we'll also keep track of the
downloading progress.

A plain and simple approach could look like this:

// curl_01.php

$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, "http://google.com");

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

curl_setopt($ch, CURLOPT_PROGRESSFUNCTION, 'progress');

curl_setopt($ch, CURLOPT_NOPROGRESS, false);

curl_setopt($ch, CURLOPT_HEADER, 0);

$html = curl_exec($ch);

curl_close($ch);

function progress($res, $downtotal, $down, $uptotal, $up) {

 if ($download_size > 0) {

 printf("%.2f\n", $down / $downtotal * 100);

 }

 ob_flush();

 usleep(100 * 1000);

}

We're using CURLOPT_PROGRESSFUNCTION option to set a callback function
which is invoked internally by the cURL module. It takes four arguments that
help us keep track of how much of the page's total size already has been
downloaded.

We probably don't need to show its output because it's pretty obvious.

There's also a small subset of cURL functions that work with multiple cURL
handles simultaneously. These are all prefixed with curl_multi_ and are
executed by calling curl_multi_exec(). Nonetheless,
the curl_multi_exec() function is blocking and the interpreter needs to wait
until it finishes.

Implementing cURL into a custom
Observable
We've already seen how to write a custom observer, Subject and operator.
Now is the right time to write an Observable as well. We want the
Observable to emit values when downloading the URL and, at the end, return
a complete response. We can distinguish between the two types of messages
by checking their type. Progress will always be a double, while response will
always be a string.

Let's start with our class synopsis to see how it's going to work and then
implement each method separately with a short description:

use Rx\Observable;

use Rx\ObserverInterface as ObserverI;

class CURLObservable extends Observable {

 public function __construct($url) {}

 public function subscribe(ObserverI $obsr, $sched = null) {}

 private function startDownload() {}

 private function progress($r, $downtot, $down, $uptot, $up)

{}

}

Every time we write an Observable, we'll extend the base Rx\Observable
class. We could theoretically just implement Rx\ObservableInterface, but,
most of the time, we also want to inherit all its internal logic and all existing
operators.

The constructor and method startDownload() are going to be very simple.
In startDownload(), we start downloading the URL while monitoring its
progress.

Please note that this code goes inside the CURLObservable class; we're just
trying to keep the code short and easy to read, so we have omitted indentation
and class definition in this example:

public function __construct($url) {

 $this->url = $url;

}

private function startDownload() {

 $ch = curl_init();

 curl_setopt($ch, CURLOPT_URL, $this->url);

 curl_setopt($ch, CURLOPT_PROGRESSFUNCTION,

[$this,'progress']);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

 curl_setopt($ch, CURLOPT_NOPROGRESS, false);

 curl_setopt($ch, CURLOPT_HEADER, 0);

 curl_setopt($ch, CURLOPT_USERAGENT, 'Mozilla/5.0 ...');

 // Disable gzip compression

 curl_setopt($ch, CURLOPT_ENCODING, 'gzip;q=0,deflate,sdch');

 $response = curl_exec($ch);

 curl_close($ch);

 return $response;

}

This is mostly the same as the example using an imperative approach. The
only interesting difference is that we're using a callable [$this,'progress']
instead of just a function name, as we did earlier.

The actual emission of values happens inside the progress() method:

private function progress($res, $downtotal, $down, $uptotal, $up)

{

 if ($downtotal > 0) {

 $percentage = sprintf("%.2f", $down / $downtotal * 100);

 foreach ($this->observers as $observer) {

 /** @var ObserverI $observer */

 $observer->onNext(floatval($percentage));

 }

 }

}

Since we inherited the original Observable, we can make use of its protected
property $observers that holds all subscribed observers, as its name
suggests. To emit a value to all of them, we can simply iterate the array and
call onNext on each observer.

The only method we haven't seen so far is subscribe():

public function subscribe(ObserverI $obsr, $sched = null) {

 $disp1 = parent::subscribe($obsr, $sched);

 if (null === $sched) {

 $sched = new ImmediateScheduler();

 }

 $disp2 = $sched->schedule(function() use ($obsr, $started) {

 $response = $this->startDownload();

 if ($response) {

 $obsr->onNext($response);

 $obsr->onCompleted();

 } else {

 $msg = 'Unable to download ' . $this->url);

 $obsr->onError(new Exception($msg));

 }

 });

 return new CompositeDisposable([$disp1, $disp2]);

}

This method combines many of the things we've seen in this chapter:

We definitely want to keep the original functionality of the Observable,
so we'll call its parent implementation. This adds the observer to the
array of observers, as mentioned a moment ago.
The parent::subscribe() method returns a disposable. That's the
object we can use to unsubscribe the observer from this Observable.
If we don't specify what Scheduler this Observable should use, it'll fall
back to ImmediateScheduler. We've already
mentioned ImmediateScheduler when we were talking about
Schedulers in general. In RxPHP 2, we'd use
Scheduler::getImmediate() instead of directly using the class name.
Right after that, we schedule the work (in terms of Schedulers, it's
usually referred to as "action") to be executed by the Scheduler. Note
that the action itself is a closure.
Then, we start downloading the URL. If we subscribe another observer
to the same Observable, it'll re-download the same URL again.
Download progress is then emitted with frequency according to cURL's

internals. We'll talk more about the subscription process in the next
chapter.
When downloading finishes, we emit the response or an error.
At the end of this method, it returns another disposable. This
time, it's CompositeDisposable that is used to wrap other disposables.
When calling its dispose() method, these wrapped ones are properly
disposed as well.

So, that's it. Now we can test our Observable and see what its output is. We
can try to grab a list of the most recent questions on www.stackoverflow.com
tagged with functional-programming":

$url = 'https://api.stack...&tagged=functional-programming';

$observable = new CurlObservable($url);

$observable->subscribe(new DebugSubject());

This prints a couple of numbers and then the response JSON string:

16:17:52 onNext: 21.39 (double)

16:17:52 onNext: 49.19 (double)

16:17:52 onNext: 49.19 (double)

16:17:52 onNext: 76.99 (double)

16:17:52 onNext: 100 (double)

16:17:52 onNext: {"items":[{"tags":["javascript","... (string)

16:17:52 onCompleted

You can see that one value was emitted twice. This is because of the timing
and network latency when cURL evaluates the callback, which is nothing
unusual. If we didn't want to see repeated values, we could use the
distinct() operator that we saw when talking about "marble diagrams".

Now let's combine it with our JSONDecodeOperator. Since we're now
interested only in the string response and want to ignore all progress
emissions, we'll also use the filter() operator:

// rxphp_curl.php

$observable

 ->filter(function($value) {

 return is_string($value);

 })

http://www.stackoverflow.com

 ->lift(function() {

 return new JSONDecodeOperator();

 })

 ->subscribe(new DebugSubject(null, 128));

This returns part of the response array (for demonstration purposes, we added
indentation and made the output a little longer):

$ php rxphp_curl.php

16:23:55 [] onNext: {

 "items": [

 {

 "tags": [

 "javascript",

 "functional-programming",

 ... (array)

16:23:55 [] onCompleted

When we used the filter() operator, you might notice that we called
it Observable::filter() without necessarily using the lift() method. This
is because almost all operators are, in fact, just lift() calls with predefined
Closures that return an appropriate operator class. A good question is whether
we can write our own shorthand for JSONDecodeOperator when we're already
extending the base Observable class. Maybe something
like Observable::jsonDecode()?

The answer is yes, we can. However, in RxPHP 1.x, it wouldn't help us a lot.
When we chain operators, they return other instances of Observables that
aren't under our control. We could theoretically use
Observable::jsonDecode() right after creating CurlObservable because
we'd know that it's going to be an instance of this class, but chaining it
with filter() brings us back to the original Observable that doesn't know
any jsonDecode() methods. In particular, the filter() operator returns an
instance of Rx\Observable\AnonymousObservable.

Running multiple requests asynchronously

An interesting use case could be to start multiple requests asynchronously.
All calls to curl_exec() are blocking, which means that they block the

execution context until they're finished.

Unfortunately, this is a very tricky problem that's hard to solve without using
any extra PHP modules, such as pthreads, as we'll see much later in Chapter
9, Multithreaded and Distributed Computing with pthreads and Gearman.

We can, however, make use of PHP's standard proc_open() to spawn non-
blocking subprocesses that can run in parallel and then just ask for their
output.

The proc_open() and non-blocking
fread()
Our goal is to have the means to start various subprocesses asynchronously.
In this example, we'll use a simple PHP script that'll just sleep for a couple of
seconds and represent our asynchronous task:

// sleep.php

$name = $argv[1];

$time = intval($argv[2]);

$elapsed = 0;

while ($elapsed < $time) {

 sleep(1);

 $elapsed++;

 printf("$name: $elapsed\n");

}

This script takes two arguments. The first one is an identifier of our choice
that we'll use to distinguish between multiple processes. The second one is
the number of seconds this script will run while printing its name and the
elapsed time every second. For example, we can run:

$ sleep.php proc1 3

proc1: 1

proc1: 2

proc1: 3

Now, we'll write another PHP script that uses proc_open() to spawn a
subprocess. Also, as we said, we need the script to be non-blocking. This
means that we need to be able to read output from the subprocess as it is
printed using printf() above, while being able to spawn more subprocess, if
needed:

// proc_01.php

$proc = proc_open('php sleep.php proc1 3', [

 0 => ['pipe', 'r'], // stdin

 1 => ['pipe', 'w'], // stdout

 2 => ['file', '/dev/null', 'a'] // stderr

], $pipes);

stream_set_blocking($pipes[1], 0);

while (proc_get_status($proc)['running']) {

 usleep(100 * 1000);

 $str = fread($pipes[1], 1024);

 if ($str) {

 printf($str);

 } else {

 printf("tickn");

 }

}

fclose($pipes[1]);

proc_close($proc);

We spawn a subprocess php sleep.php proc1 3 and then go into a loop.
With a 100ms delay, we check whether there's any new output from the
subprocess using fread(). If there is, we print it; otherwise, just write the
word "tick". The loop will end when the subprocess terminates (that's the
condition with the proc_get_status() function).

The most important thing in this example is calling
the stream_set_blocking() function, which makes operations with this
stream non-blocking.

Event loop and RxPHP
Applying event loop to Observables would work in a similar way. We'd
create Observables, start an event loop and periodically check their progress.
Luckily for us, RxPHP is prepared for this. In combination with the
ReactPHP library (https://github.com/reactphp/react), we can use a
Scheduler that's designed exactly for what we need.

As an example, we can have a look at IntervalObservable that periodically
emits values:

// rxphp_eventloop.php

$loop = new ReactEventLoopStreamSelectLoop();

$scheduler = new RxSchedulerEventLoopScheduler($loop);

RxObservable::interval(1000, $scheduler)

 ->take(3)

 ->subscribe(new DebugSubject());

$loop->run();

This prints three values with 1s delays:

$ php rxphp_eventloop.php

23:12:44 [] onNext: 0 (integer)

23:12:45 [] onNext: 1 (integer)

23:12:46 [] onNext: 2 (integer)

23:12:46 [] onCompleted

Note

In RxPHP 2, using event loops has been simplified and, most of the time, we
don't even need to worry about starting the loop ourselves. We'll talk about
differences between RxPHP 1.x and RxPHP 2 regarding event loops in
Chapter 6, PHP Streams API and Higher-Order Observables.

https://github.com/reactphp/react

Summary
In this chapter, we had a closer look at all the components of RxPHP.

In particular, we've seen all three types of notifications used in Rx,
Observables, observers, Subjects, Singles and operators. On practical
examples, we have designed our custom observer, Subject, Observable and
an operator. We'll use all these in the upcoming chapters.

We saw that documentation regarding Rx operators is very often described in
the form of "marble diagrams".

The next chapter is going to utilize all we did in this chapter. We're going to
create a CLI Reddit reader using RxPHP and Symfony Console component.
We'll also talk in more depth about the subscription process in Observable
chains.

Chapter 3. Writing a Reddit Reader
with RxPHP
In previous chapters, we talked a lot about asynchronous programming in
PHP and how this relates to reactive programming, in particular, how to start
using RxPHP, and how to use common PHP functions such as proc_open()
and cURL asynchronously.

This chapter will cover writing a CLI Reddit reader app using RxPHP,
Symfony Console, and Symfony Process components. We're also going to
use most of what we've learned in the previous chapter:

We'll look in more depth into what happens internally when creating
Observable chains and subscribing to Observables.
We'll see how Disposables are used in the default classes that come with
RxPHP, and how these are going to be useful for unsubscribing from
Observables in our app.
Subjects can sometimes simplify our lives when working with operator
chains.
How to use Observable::create() and Observable::defer() static
methods to create new Observables with custom logic on subscription.
Symfony Console library is going to be our tool of choice for most CLI
interactions throughout this book. Before we start using it, we'll have a
quick look at what its practical benefits are.
The event loop from the previous chapter is going to be the center of our
app. We're going to use it to make the app responsive (we could also
say, reactive) at any given time.
To easily work with subprocesses, we'll use Symfony Process
component, which handles all the heavy work related to managing
subprocesses for us.
We'll use non-blocking stream handling we've seen already in practice,
in combination with input from terminal and output from a
subprocesses.
We'll list disposable classes provided by RxPHP.

Before we dive in, now is a good time to have a closer look at the internal
functionality of RxPHP, which hasn't been very important thus far.
Nonetheless, this knowledge is going to be crucial in this and most of the
upcoming chapters.

Examining RxPHP's internals
In the previous chapter, we briefly mentioned disposables as a means for
releasing resources used by observers, Observables, Subjects, and so on. In
practice, a disposable is returned, for example, when subscribing to an
Observable. Consider the following code from the default
Rx\Observable::subscribe() method:

function subscribe(ObserverI $observer, $scheduler = null) {

 $this->observers[] = $observer;

 $this->started = true;

 return new CallbackDisposable(function () use ($observer) {

 $this->removeObserver($observer);

 });

}

This method first adds the observer to the array of all subscribed observers. It
then marks this Observable as started (remember the difference between
"cold" and "hot" Observables from Chapter 2, Reactive Programming with
RxPHP) and, at the end, it returns a new instance of the CallbackDisposable
class. This class takes a Closure as an argument and invokes it when it's
disposed. This is probably the most common use case for disposables.

This disposable just removes the observer from the array, and therefore, it
receives no more values emitted from this Observable.

A closer look at subscribing to Observables
It should be obvious that Observables need to work in such a way that all
their subscribed observers can be iterated. Then, unsubscribing via a
disposable will need to remove one particular observer from the array of all
subscribed observers.

However, if we have a look at how most of the default Observables work, we
find out that they always override the Observable::subscribe() method and
usually completely omit the part where it should hold an array of subscribers.
Instead, they just emit all available values to the subscribed observer and
finish with the onComplete() signal immediately after that. For example, we
can have a look at the actual source code of the subscribe() method of
the Rx\ReturnObservable class in RxPP 1:

function subscribe(ObserverI $obs, SchedulerI $sched = null) {

 $value = $this->value;

 $scheduler = $scheduler ?: new ImmediateScheduler();

 $disp = new CompositeDisposable();

 $disp->add($scheduler->schedule(function() use ($obs, $val) {

 $obs->onNext($val);

 }));

 $disp->add($scheduler->schedule(function() use ($obs) {

 $obs->onCompleted();

 }));

 return $disp;

}

The ReturnObservable class takes a single value in its constructor and emits
this value to every observer as they subscribe.

The following is a nice example of how the lifecycle of an Observable might
look:

When an observer subscribes, it checks whether a Scheduler was also
passed as an argument. Usually, it's not, so it creates an instance
ofImmediateScheduler. Note that in RxPHP 2 the Scheduler can be set

only in the class constructor.
Then, an instance of CompositeDisposable is created, which is going to
keep an array of all disposables used by this method. When
calling CompositeDisposable::dispose(), it iterates all disposables it
contains and calls their respective dispose() methods.
Right after that, we start populating our CompositeDisposable with the
following:

 $disposable->add($scheduler->schedule(function() { ...

}));

This is something we'll see very often. The
SchedulerInterface::schedule() method returns a
DisposableInterface, which is responsible for canceling the action and
releasing resources. In this case, when we're
using ImmediateScheduler, which has no other logic, it just evaluates
the Closure immediately:

 function () use ($obs, $val) {

 $observer->onNext($val);

 }

Since ImmediateScheduler::schedule() doesn't need to release any
resources (it didn't use any), it just returns an instance
of Rx\Disposable\EmptyDisposable that does literally nothing.
Then the disposable is returned, and could be used to unsubscribe from
this Observable. However, as we saw in the preceding source code, this
Observable doesn't let you unsubscribe, and if we think about it, it
doesn't even make sense because ReturnObservable class's value is
emitted immediately on subscription.

The same applies to other similar Observables, such
as IteratorObservable, RangeObservable or ArrayObservable. These just
contain recursive calls with Schedulers, but the principle is the same.

A good question is, why on Earth is this so complicated? All the preceding
code does could be stripped into the following three lines (assuming we're not
interested in using Schedulers):

function subscribe(ObserverI $observer) {

 $observer->onNext($this->value);

 $observer->onCompleted();

}

Well, for ReturnObservable this might be true, but in real applications, we
very rarely use any of these primitive Observables. Another very important
use case for Schedulers is testing. We can provide a test Scheduler that
simulates delayed execution, to make sure our Observables and operators
emit values in the correct order. We'll go into this topic in depth in Chapter 5,
Testing RxPHP Code.

The ability to unsubscribe from Observables or clean up any resources when
unsubscribing is very important, and we'll use it in a few moments.

Emitting multiple values with Schedulers

We've seen how to use RangeObservable already. Now, when we know why
using Scheduler->schedule() is important, we can for tutorial purposes
think about how we could implement RangeObservable Observable's
functionality ourselves.

For example, it could look like the following:

// custom_range_01.php

use Rx\Observable;

use Rx\ObserverInterface;

class CustomRangeObservable extends Observable {

 private $min;

 private $max;

 public function __construct($min, $max) {

 $this->min = $min;

 $this->max = $max;

 }

 public function subscribe($observer, $sched = null) {

 if (null === $sched) {

 $sched = new \Rx\Scheduler\ImmediateScheduler();

 }

 return $sched->schedule(function() use ($observer) {

 for ($i = $this->min; $i <= $this->max; $i++) {

 $observer->onNext($i);

 }

 $observer->onCompleted();

 });

 }

}

(new CustomRangeObservable(1, 5))

 ->subscribe(new DebugSubject());

When we run this example, we'll see that it produces the correct results:

$ php custom_range_01.php

1

2

3

4

5

However, the original RangeObservable has one interesting feature. It's able
to unsubscribe inside the loop, which means that we can stop generating
values any time we want.

Consider the following example, where we unsubscribe inside the observer's
callable:

// range_01.php

use Rx\Observable;

use Rx\Scheduler\EventLoopScheduler;

use React\EventLoop\StreamSelectLoop;

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

$disposable = Observable::range(1, 5)

 ->subscribeCallback(function($val) use (&$disposable) {

 echo "$val\n";

 if ($val == 3) {

 $disposable->dispose();

 }

 }, null, null, $scheduler);

$scheduler->start();

This example emits only the first three values and then unsubscribes using
$disposable->dispose().

Note

We had to use an asynchronous EventLoopScheduler, because we want to
start executing scheduled actions after we subscribe. With
EventLoopScheduler, the execution starts by calling $scheduler->start().
If we use the default ImmediateScheduler, then the $disposable variable
will always be null (unassigned), because all the scheduled actions would be
executed inside subscribeCallback() method and the $disposable variable
will never be assigned.

When we run this demo we'll see just the first three numbers:

$ php range_01.php

1

2

3

If we try the same with our CustomRangeObservable we've just created, we'll
see that it doesn't unsubscribe and we always receive all values. To deal with
such use cases, Scheduler has a scheduleRecursive() method that behaves
just like schedule() but its callable takes one argument, which is a callable
itself to reschedule another emission.

In practice, we can rewrite CustomRangeObservable::subscribe() method
to use scheduleRecursive() instead of schedule():

public function subscribe($observer, $sched = null) {

 if (null === $sched) {

 $sched = new \Rx\Scheduler\ImmediateScheduler();

 }

 $i = $this->min;

 return $sched->scheduleRecursive(

 function($reschedule) use ($observer, &$i) {

 if ($i <= $this->max) {

 $observer->onNext($i);

 $i++;

 $reschedule();

 } else {

 $observer->onCompleted();

 }

 });

}

Notice that we're not creating any loops ourselves and we let
$reschedule() recursively call itself. Now we can properly call dispose()
on the disposable object returned from $sched->scheduleRecursive() to
stop scheduling more actions. We can test this with the same scenario as we
used with RangeObservable:

// php custom_range_02.php

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

$disposable = (new CustomRangeObservable(1, 5))

 ->subscribeCallback(function($val) use (&$disposable) {

 echo "$val\n";

 if ($val == 3) {

 $disposable->dispose();

 }

 }, null, null, $scheduler);

$scheduler->start();

Now it prints only the first three numbers:

$ php custom_range_02.php

1

2

3

A closer look at operator chains
We already used operator chains in the previous chapter. Before we start
writing our Reddit reader, we should talk briefly about an interesting
situation that might occur, so that it doesn't catch us unprepared later.

We're also going to introduce a new type of Observable, called
ConnectableObservable. Consider this simple operator chain with two
subscribers:

// rxphp_filter_observables_01.php

use Rx\Observable\RangeObservable;

use Rx\Observable\ConnectableObservable;

$connObs = new ConnectableObservable(new RangeObservable(0, 6));

$filteredObs = $connObs

 ->map(function($val) {

 return $val ** 2;

 })

 ->filter(function($val) {

 return $val % 2;

 });

$disposable1 = $filteredObs->subscribeCallback(function($val) {

 echo "S1: ${val}\n";

});

$disposable2 = $filteredObs->subscribeCallback(function($val) {

 echo "S2: ${val}\n";

});

$connObs->connect();

The ConnectableObservable class is a special type of Observable that
behaves similarly to the Subject (in fact, internally, it really uses an instance
of the Subject class). Any other Observable emits all available values right
after you subscribe to it. However, ConnectableObservable takes another
Observable (the source Observable) as an argument and lets you subscribe
observers to it without emitting anything. When you call
ConnectableObservable::connect(), it subscribes to the source
Observables, and all values go one by one to all subscribers.

Internally, it contains an instance of the Subject class, and when we called
the subscribe() method, it just subscribed each observer to its internal
Subject. Then when we called the connect() method, it subscribed the
internal Subject to the source Observable.

In the $filteredObs variable we keep a reference to the Observable returned
from filter() operator, which is an instance of AnnonymousObservable
where, on the next few lines, we subscribe both observers.

Now, let's see what this operator chain prints:

$ php rxphp_filter_observables_01.php

S1: 1

S2: 1

S1: 9

S2: 9

S1: 25

S2: 25

As we can see, all values went through both observers in the order they were
emitted. Just out of curiosity, we can also have a look at what would happen
if we didn't use ConnectableObservable, and used just the RangeObservable
instead:

$ php rxphp_filter_observables_02.php

S1: 1

S1: 9

S1: 25

S2: 1

S2: 9

S2: 25

This time, RangeObservable emitted all values to the first observer and then,
again, all values to the second observer. We can see that the source
Observable had to generate all the values twice, which is inefficient, and with
a large dataset, this might cause a performance bottleneck.

Subscribing to ConnectableObservable

Let's go back to the first example with ConnectableObservable, and modify

the filter() call so it prints all the values that go through:

$filteredObservable = $connObservable

 ->map(function($val) {

 return $val ** 2;

 })

 ->filter(function($val) {

 echo "Filter: $val\n";

 return $val % 2;

 });

Now we run the code again and see what happens:

$ php rxphp_filter_observables_03.php

Filter: 0

Filter: 0

Filter: 1

S1: 1

Filter: 1

S2: 1

Filter: 4

Filter: 4

Filter: 9

S1: 9

Filter: 9

S2: 9

Filter: 16

Filter: 16

Filter: 25

S1: 25

Filter: 25

S2: 25

Well, this is unexpected! Each value is printed twice, even though we're
using ConnectableObservable. This doesn't always mean that the
Observable has to generate all the values twice, however (as we'll see in
Chapter 8, Multicasting in RxPHP and PHP7 pthreads Extension). It's not
obvious at first sight what happened, but the problem is that we subscribed to
the Observable at the end of the operator chain.

As stated previously, $filteredObservable is an instance
of AnnonymousObservable that holds many nested Closures. By calling

its subscribe() method, it runs a Closure that's created by its predecessor,
and so on. This leads to the fact that every call to subscribe() has to invoke
the entire chain. While this might not be an issue in many use cases, there are
situations where we might want to do a special operation inside one of the
filters.

The operator chain for this example looks like the following diagram, where
each subscription is represented by an arrow:

The most important consequence of all this is that neither operators nor
AnnonymousObservable class share values that go through them. In fact, none
of them keep track of subscribed observers either.

Also, note that calls to the subscribe() method might be out of our control,
performed by another developer who wanted to use an Observable we created
for them.

It's good to know that such a situation might occur and could lead to
unwanted behavior.

Note

It's sometimes hard to see what's going on inside Observables. It's very easy
to get lost, especially when we have to deal with multiple nested Closures in
PHP. Schedulers are prime examples. Feel free to experiment with the
examples shown here and use debugger to examine step-by-step what code
gets executed and in what order.

So, let's figure out how to fix this. One way could be restructuring our code
where we'll turn $filteredObservable into ConnectableObservable and not
RangeObservable directly. Consider the following code:

// rxphp_filter_observables_04.php

$source = new RangeObservable(0, 6);

$filteredObservable = $source

 ->map(function($val) {

 return $val ** 2;

 })

 ->filter(function($val) {

 echo "Filter: $val\n";

 return $val % 2;

 });

$connObs = new ConnectableObservable($filteredObservable);

$disposable1 = $connObs->subscribeCallback(function($val) {

 echo "S1: ${val}\n";

});

$disposable2 = $connObs->subscribeCallback(function($val) {

 echo "S2: ${val}\n";

});

$connObs->connect();

When we run this code, we can see the filter() operator is called just once
for each value:

$ php rxphp_filter_observables_04.php

Filter: 0

Filter: 1

S1: 1

S2: 1

Filter: 4

Filter: 9

S1: 9

S2: 9

Filter: 16

Filter: 25

S1: 25

S2: 25

To better understand what is different to the previous example, we can have a
look at a diagram representing this operator chain:

We can see that the ConnectableObservable was moved down the chain and
it subscribes to the filter() operator instead of RangeObservable.

Using Subject instead of ConnectableObservable

We said we don't want to subscribe at the end of the chain multiple times, so
we can create an instance of Subject class, where we'll subscribe both
observers, and the Subject class itself will subscribe to
the $filteredObservable, as discussed a moment ago:

// rxphp_filter_observables_05.php

use Rx\Subject\Subject;

$subject = new Subject();

$source = new RangeObservable(0, 6);

$filteredObservable = $source

 ->map(function($val) {

 return $val ** 2;

 })

 ->filter(function($val) {

 echo "Filter: $val\n";

 return $val % 2;

 })

 ->subscribe($subject);

$disposable1 = $subject->subscribeCallback(function($val) {

 echo "S1: ${val}\n";

});

$disposable2 = $subject->subscribeCallback(function($val) {

 echo "S2: ${val}\n";

});

$filteredObservable->subscribe($subject);

We can run the script and see that it returns exactly the same output as the
previous example:

$ php rxphp_filter_observables_05.php

Filter: 0

Filter: 1

S1: 1

S2: 1

Filter: 4

Filter: 9

S1: 9

S2: 9

Filter: 16

Filter: 25

S1: 25

S2: 25

This might look like an edge case, but soon we'll see that this issue, left
unhandled, could lead to some very unpredictable behavior. We'll bring out
both these issues (proper usage of disposables and operator chains) when we
start writing our Reddit reader.

Observable::create() and
Observable::defer()
We know how to create Observables using ReturnObservable or
RangeObservable. We've also written a custom CURLObservable as well.
However, in some situations we might want to create an Observable with
some custom logic that isn't easily reproducible with already existing
Observable classes. Of course, we could write another Observable inheriting
the base Observable class, but if we need to deal with a very specific, single
use-case scenario, there's an easier way with static methods
Observable::create() and Observable::defer().

Creating Observables with
Observable::create()
With Observable::create(), we can create an Observable that
automatically pushes values into each of its observers on subscription.
Consider the following example:

// observable_create_01.php

use Rx\Observable;

use Rx\ObserverInterface;

$source = Observable::create(function(ObserverInterface $obs) {

 echo "Observable::create\n";

 $obs->onNext(1);

 $obs->onNext('Hello, World!');

 $obs->onNext(2);

 $obs->onCompleted();

});

$source->subscribe(new DebugSubject());

$source->subscribe(new DebugSubject());

The callable passed to Observable::create() takes as a parameter an
observer where it can immediately start emitting values. It's important to
remember that this callable is going to be called for each observer. This
example prints the following output:

$ php observable_create_01.php

Observable::create

21:00:52 [] onNext: 1 (integer)

21:00:52 [] onNext: Hello, World! (string)

21:00:52 [] onNext: 2 (integer)

21:00:52 [] onCompleted

Observable::create

21:00:52 [] onNext: 1 (integer)

21:00:52 [] onNext: Hello, World! (string)

21:00:52 [] onNext: 2 (integer)

21:00:52 [] onCompleted

Notice that string Observable::create is printed twice. Also, notice we

called onCompleted ourselves to properly complete the Observable.

The callable can optionally return an instance of Rx\DisposableInterface
that'll be disposed when unsubscribing/completing the Observable. We can
modify the same example to return an instance of CallbackDisposable:

$source = Observable::create(function(ObserverInterface $obs) {

 ...

 return new CallbackDisposable(function() {

 echo "disposed\n";

 });

});

Now each CallbackDisposable will be called to properly cleanup resources
for each observer.

Creating Observables with
Observable::defer()
Imagine a use case where we want to generate a random range of numbers for
each observer that subscribes to our Observable. This means we want each
observer to have a different range of numbers.

Lets see what would happen if we used just RangeObservable:

// observable_defer_01.php

use Rx\Observable;

$source = Observable::range(0, rand(1, 10));

$source->subscribe(new DebugSubject('#1'));

$source->subscribe(new DebugSubject('#2'));

Since we created a single source Observable, both observers will always
receive the same range of numbers. Range dimensions are set once when
calling Observable::range(). So, for example, the output from this script
could look like the following:

$ php observable_defer_01.php

21:38:29 [#1] onNext: 0 (integer)

21:38:29 [#1] onNext: 1 (integer)

21:38:29 [#1] onNext: 2 (integer)

21:38:29 [#1] onCompleted

21:38:29 [#2] onNext: 0 (integer)

21:38:29 [#2] onNext: 1 (integer)

21:38:29 [#2] onNext: 2 (integer)

21:38:29 [#2] onCompleted

We could of course create two source Observables, but there's a more elegant
way using Observable::defer() static method:

// observable_defer_02.php

use Rx\Observable;

$source = Observable::defer(function() {

 return Observable::range(0, rand(1, 10));

});

$source->subscribe(new DebugSubject('#1'));

$source->subscribe(new DebugSubject('#2'));

Static method Observable::defer() takes as argument a callable that is
called every time an observer subscribes similarly to Observable::create().
However, this callable needs to return another Observable where the observer
will subscribe. Instead of creating a RangeObservable just once, we're
creating a new one for each observer.

The output for this example could look like the following:

$ php observable_defer_02.php

21:40:58 [#1] onNext: 0 (integer)

21:40:58 [#1] onNext: 1 (integer)

21:40:58 [#1] onNext: 2 (integer)

21:40:58 [#1] onNext: 3 (integer)

21:40:58 [#1] onCompleted

21:40:58 [#2] onNext: 0 (integer)

21:40:58 [#2] onCompleted

Notice that each observer received a different range of numbers.

Writing a Reddit reader using
RxPHP
This and many upcoming apps we're going to build will be pure CLI apps.
That said, it'll be helpful to have some unified library that'll help us with
things common in the CLI environment:

The tool of choice for us is going to be Symfony Console component (
http://symfony.com/doc/current/components/console.html). It's an open-
source library developed along with the Symfony framework, but it's
designed to be used independently in any project, which is ideal for us.

It handles everything from inputs to outputs, and on top of that, it comes with
a few very nifty helpers as well. In particular, we're going to use the
following:

Coloring and formatting the console output
Splitting a CLI app into multiple independent commands

http://symfony.com/doc/current/components/console.html

Automatically generating help from an input parameter definition
Handling input parameters, including validation and default values
Creating a unified set of functions to handle user input

In this example, we're going to use just the first two bullet points, but in later
chapters, we'll use all the features listed here.

Using the Symfony Console component
Start by installing the Symfony Console component via composer:

$ composer require symfony/console

Each CLI app is divided into multiple commands that can be run on their
own. We'll set one default command because our app is very simple and we
can put all its logic into a single command.

The entrance point of our app is just going to register the command and then
let the Console library handle everything for us:

// console_reddit.php

require_once __DIR__ . '/../vendor/autoload.php';

require_once 'RedditCommand.php';

$application = new Symfony\Component\Console\Application();

$application->setDefaultCommand('reddit');

$application->add(new RedditCommand());

$application->run();

Running the $application::run() method checks CLI parameters from
PHP globals and chooses the right command based on that. Since our app has
only one command, we don't need to pass any parameters from terminal; the
app will use the default one, RedditCommand, which we'll start writing right
now.

Each command inherits the Symfony\Component\Console\Command class and
should at least define its name:

// RedditCommand.php

use Symfony\Component\Console\Command\Command;

use Symfony\Component\Console\Input\InputInterface as InputI;

use Symfony\Component\Console\Output\OutputInterface as OutputI;

class RedditCommand extends Command {

 protected function configure() {

 $this->setName('reddit');

 $this->setDescription(

 'CLI Reddit reader created using RxPHP library.');

 }

 protected function execute(InputI $input, OutputI $output) {

 $output->writeln('<info>Hello, World!</info>');

 }

}

This command's name is reddit, which needs to match the name we set
using setDefaultCommand().

Notice that we can use tags similar to HTML for some basic styling, which is
very limited, but it's enough for the purposes of typical CLI apps. There are
four predefined colors that we'll use, but if you want to go into more detail
feel free to check the documentation on coloring outputs at
http://symfony.com/doc/current/console/coloring.html :

<info> = green
<comment> = yellow
<question> = black on cyan background
<error> = white text on red background

When Symfony Console library recognizes a command, it calls its execute()
method while passing two objects used to handle inputs and outputs. We
don't usually want to handle input or output by ourselves because there are
inconsistencies across different platforms and Console library can do
everything for us.

One suitable exception is when we want to use non-blocking user input
instead of the built-in question helper. As it happens, this is exactly what
we're going to do in a moment, but let's first see how to run this command
from terminal:

$ php console_reddit.php

Hello, World!

Since RedditCommand is also the default command, we didn't have to set any
CLI parameters to execute it. This is actually identical to running the
following:

http://symfony.com/doc/current/console/coloring.html

$ php console_reddit.php reddit

One CLI app can hold multiple commands, as stated previously. We can list
all commands supported by this app with the following:

$ php console_reddit.php list

This prints a nicely colored overview of all commands, and some common
options allowed by all apps by default:

Among them, there's also our reddit command with the description we set
above. We could also use the help command to get detailed information
about a particular command, but since our reddit command has no input
parameters, we won't see anything interesting, so we'll keep it for later.

Note

Notice that help and list are just commands like any other.

Non-blocking user input and an event loop
At the end of the previous chapter, we talked about blocking and non-
blocking streams in PHP using proc_open() and stream_set_blocking().
We also mentioned that we need some kind of event loop that, while
periodically checking for user input, doesn't block the execution thread, in
order to make the app responsive at any time.

The basic principles that we're going to use for our command are as follows:
We'll create an Observable that emits a value for every line of input it
receives (that's a string followed by Enter key). This Observable will have
multiple observers that will subscribe and unsubscribe based on the current
app's internal state. We'll always have at least one observer active, which is
going to look for the q (quit) string that terminates the event loop and ends
the app.

Let's extend the execute() method to read a user's input from terminal and
the event loop itself:

use Rx\Observable\IntervalObservable;

class RedditCommand extends Command {

 /** @var \Rx\Subject\Subject */

 private $subject;

 private $interval;

 protected function execute(InputI $input, OutputI $output) {

 $this->subject = new \Rx\Subject\Subject();

 $stdin = fopen('php://stdin', 'r');

 stream_set_blocking($stdin, false);

 $loop = new React\EventLoop\StreamSelectLoop();

 $scheduler = new Rx\Scheduler\EventLoopScheduler($loop);

 $this->interval = new IntervalObservable(100, $scheduler);

 $disposable = $this->interval

 ->map(function($count) use ($stdin) {

 return trim(fread($stdin, 1024));

 })

 ->filter(function($str) {

 return strlen($str) > 0;

 })

 ->subscribe($this->subject);

 $loop->run();

 }

}

There are already a few concepts used worth noting, so let's take a look at
each of them separately:

We opened an input stream with fopen('php://stdin', 'r') and
made it non-blocking using the stream_set_blocking() function. This
is exactly the same principle as we used in the previous chapter,
with proc_open().
The event loop works exactly the same way as we saw in the previous
chapter. We use it here to create a stable timer that fires (or "ticks," as
it's referred in EventLoopScheduler) every 100 ms.
All user input is buffered, which means that fread() will always return
an empty string until we hit the Enter key.
With the filter() operator, we filter out all empty strings.
Values that successfully go through this operator chain are then
observed by a Subject class. This is the class where we'll subscribe our
observers later, and it emits only valid user inputs.

Using EventLoopScheduler is in fact very simple. It makes sure it emits
values at precise intervals, even though there's always some code executed
down the operator chain. It internally measures the time it fired the last time
and the time it spent in propagating the value and then sleeps only for the
interval necessary.

Note that we've already addressed the issue regarding operator chains we
explained at the beginning of this chapter. The Observable where we'll
subscribe/unsubscribe is always $this->subject, and never
the IntervalObservable directly.

Also, note that we're creating a $disposable variable that holds
a Disposable object created by calling subscribe($this->subject). This is

basically the subscription to the IntervalObservable. If we unsubscribe (this
means invoking $disposable->dispose()) the event loop will end
automatically, and so will the entire app.

Subscribing to user inputs
We've already mentioned that when a user enters q, the app should gracefully
end. We can implement this functionality right now. Once we have our
instance of Subject prepared, we can start subscribing to it:

protected function execute(InputI $input, OutputI $output) {

 // The rest of the method is the same as above

 $this->subject

 ->filter(function($value) {

 return strval($value) == 'q';

 })

 ->take(1)

 ->subscribeCallback(null, null,

 function() use ($disposable, $output, $stdin) {

 fclose($stdin);

 $output->writeln('<comment>Good bye!</comment>');

 $disposable->dispose();

 }

);

 $loop->run();

}

Note

To save space and keep code examples short, we're omitting class name,
indentation, and already defined methods that remain unchanged.

This works exactly the same as subscribing to any other Observable. What's
interesting here is that we pass the $disposable variable to the Closure,
where we call its dispose() method, which unsubscribes the Subject from
the IntervalObservable and in turn terminates the event loop. This time, we
don't need to keep any reference to a Disposable object return
from subscribeCallback(), because we know we'll never want to
unsubscribe this observer.

Notice that we're using take(1) to accept always at most one quit signal.
Then the following subscribe() call defines only one callable for complete

signal and completely ignores the remaining two.

We addressed this at the beginning of this chapter when we talked about
disposables and how these are, in fact, necessary.

We obviously want to let users choose their favorite subreddit. This is going
to be just another subscriber to $this->subject, but this time we'll keep its
disposable, because later, we need to be able to subscribe other observers and
unsubscribe this one, which needs to be subscribed only to enter subreddit
name and nothing more:

/** @var string */

private $subreddit;

/** @var \Rx\DisposableInterface */

private $subredditDisposable;

protected function execute(InputI $input, OutputI $output) {

 // The rest of the method is the same as above

 $this->askSubreddit();

 $loop->run();

}

protected function askSubreddit() {

 $this->output->write('Enter subreddit name: ');

 $this->subredditDisposable =

 $this->subject->subscribeCallback(function($value) {

 $this->subreddit = $value;

 $this->subredditDisposable->dispose();

 $this->refreshList();

 });

}

Right before we start the event loop, we schedule an action that asks the user
for the name of the subreddit they want to download and then subscribe a
new observer. When it receives a valid value, we store it in the $this-
>subreddit variable and then it unsubscribes itself using $this-
>subredditDisposable->dispose().

We can already see that there's a call to another method, called
refreshList(). This method will download posts for this subreddit via

Reddit API in JSON and print a list with their titles, where the user can
choose which one of them they want to read by entering the post's index
number.

To download the list, we're going to use the cURL PHP module. We've
already used it in Chapter 2, Reactive Programming with RxPHP, where we
created CURLObservable for this purpose, which comes in handy here as well.
Also, we've already written JSONDecodeOperator for decoding JSON strings,
which we'll also use:

const API_URL = 'https://www.reddit.com/r/%s/new.json';

protected function refreshList() {

 $curlObservable = new CurlObservable(

 sprintf(self::API_URL, $this->subreddit));

 $curlObservable

 ->filter(function($value) {

 return is_string($value);

 })

 ->lift(function() {

 return new JSONDecodeOperator();

 })

 ->subscribeCallback(function(array $response) {

 $articles = $response['data']['children'];

 foreach ($articles as $i => $entry) {

 $this->output->writeln("<info>${i}</info> " .

 $entry['data']['title']);

 }

 $this->printHelp();

 $template = ', <info>[%d-%d]</info>: Read article';

 $this->output->writeln(

 sprintf($template, 0, count($articles)));

 $this->chooseArticleDetail($articles);

 }), function($e) {

 $this->output->writeln(

 '<error>Unable to download data</error>');

 });

}

This is what we've already seen and it should be very easy to follow. We use

CURLObservable to download the URL, and then JSONDecodeOperator to
decode it from a JSON to a PHP array. We then iterate the list of all articles it
contains and print their indices and titles.

We introduced one more small method, called printHelp(), which only
prints a hint that typing q and hitting Enter will quit the app. We then
append some more hints relative only to the current state, such as [b] Back to
the list, as we can see in the following screenshot:

Then, similarly, it calls chooseArticleDetail(), which lets the user enter
the index number of the article they want to see.

This could go on and on but the principle is always the same. We subscribe
an observer to the main Subject class stored in $this->subject, check only
values relevant to the current application state, perform some action, and then
unsubscribe. It's probably not necessary to include the complete source code
here because it would be very repetitive.

Note

If you want to see all methods for this app implemented, then check out the
full source codes for this chapter.

Instead, let's focus on another thing related to CURLObservable and
subprocesses, with Symfony Process component.

Non-blocking CURLObservable
In our Reddit reader app, we download data from a remote API using PHP's
cURL. Even when using its asynchronous callbacks, such as
CURLOPT_PROGRESSFUNCTION, it's important to keep in mind that curl_exec()
is still a blocking call, no matter what options we choose.

This is due to the fact that PHP runs in a single execution thread and when it
starts executing curl_exec(), everything else needs to wait until it finishes.
It's true that this method might call some callback functions, but if any of
them got stuck, for example, in an infinite loop, the curl_exec() function
would never end.

This has serious implications for the actual responsiveness of our Reddit
reader. While CURLObservable is downloading data, it doesn't respond to any
user input, which is probably not what we want.

When we talked about IntervalObservable and how it's able to keep the
desired interval very precisely, we didn't mention that this is, in fact, a type of
situation it can't handle.

Let's make a small script that demonstrates such behavior. We'll use
IntervalObservable to fire every second:

use Rx\Observable\IntervalObservable;

function getTime() {

 $t = microtime(true);

 $micro = sprintf("%06d", ($t - floor($t)) * 1000000);

 return date('H:i:s') . '.' . $micro;

}

$loop = new React\EventLoop\StreamSelectLoop();

$scheduler = new Rx\Scheduler\EventLoopScheduler($loop);

$observable = new IntervalObservable(1000, $scheduler);

$observable->map(function($tick) {

 printf("%s Map: %d\n", getTime(), $tick);

 return $tick;

})->subscribeCallback(function($tick) {

 printf("%s Observer: %d\n", getTime(), $tick);

});

$loop->run();

This example prints the current time very precisely, including microseconds.
If we keep it running for a while, we'll still see that it holds to microseconds
pretty well while incrementing by one second:

$ php blocked_intervalobservable.php

00:27:14.306441 Map: 0

00:27:14.306509 Observer: 0

00:27:15.305033 Map: 1

00:27:15.305116 Observer: 1

...

00:28:22.306071 Map: 68

00:28:22.306124 Observer: 68

We can already observe that the map() operator is called shortly before the
observer. Now, let's add a usleep(1250 * 1000); call into the map()
operator. We can see that the gap is even larger than the 1-second interval
of IntervalObservable, which makes it completely out of sync:

$ php blocked_intervalobservable.php

00:41:25.606327 Map: 0

00:41:26.859891 Observer: 0

00:41:26.860455 Map: 1

00:41:28.113972 Observer: 1

This implies that, even when we rely on IntervalObservable to do all the
timing necessary, it can't do anything when there's code anywhere in the
operator chain blocking the execution. This is what happened to us
with CURLObservable, and the app not responding when curl_exec() is
running.

Unfortunately, PHP itself, without any extra modules, doesn't give us many
options to write non-blocking code.

But in the previous chapter, we used proc_open()
and stream_set_blocking() to run a non-blocking subprocess, so we can

use the same technique and wrap CURLObservable into a standalone app that
we can run as a subprocess.

Since we already know how to write CLI apps using Symfony Console
component, we're going to use it here as well:

// wrap_curl.php

use Symfony\Component\Console\Command\Command;

use Symfony\Component\Console\Input\InputInterface as InputI;

use Symfony\Component\Console\Output\OutputInterface as OutputI;

use Symfony\Component\Console\Input\InputArgument;

class CURLCommand extends Command {

 protected function configure() {

 $this->setName('curl');

 $this->setDescription(

 'Wrapped CURLObservable as a standalone app');

 $this->addArgument('url',

 InputArgument::REQUIRED, 'URL to download');

 }

 protected function execute(InputI $input, OutputI $output) {

 $returnCode = 0;

 (new CURLObservable($input->getArgument('url')))

 ->subscribeCallback(function($res) use ($output) {

 if (!is_float($response)) {

 $output->write($res);

 }

 }, function() use (&$returnCode) {

 $returnCode = 1;

 });

 return $returnCode;

 }

}

$application = new Symfony\Component\Console\Application();

$application->add(new CURLCommand());

$application->run();

This command has one required argument, which is the URL it's supposed to
download. It uses CURLObservable internally to download the URL, and then
just prints the response to its standard output. It also sets proper UNIX return
code when an error occurs.

If we try to run the command without any arguments, it prints an error telling
us that this command has to have exactly one argument:

We can test the command manually; for example with the following:

$ php wrapped_curl.php curl https://www.reddit.com/r/php/new.json

{"kind": "Listing", "data": {"modhash": "", "children": ...

Now, we could use proc_open() like in the previous chapter, but apart from
just spawning the process, there are a lot of things to handle by ourselves, so
it's easier to leave all the heavy work to another library.

Using Symfony Process component
As usual, we'll install this library using composer:

$ php composer require symfony/process

This library lets us create new processes, read their outputs in a non-blocking
way, send inputs, send signals, use timeouts, terminate processes, and so on.

To test things out, we'll make a small script that uses IntervalObservable to
print a number every second while waiting for the subprocess to finish:

// php curl_subprocess.php

use Symfony\Component\Process\Process;

use Rx\Observable\IntervalObservable;

$c='php wrap_curl.php curl

https://www.reddit.com/r/php/new.json';

$process = new Process($c);

$process->start();

$loop = new React\EventLoop\StreamSelectLoop();

$scheduler = new Rx\Scheduler\EventLoopScheduler($loop);

(new IntervalObservable(1000, $scheduler))

 ->takeWhile(function($ticks) use ($process) {

 return $process->isRunning();

 })

 ->subscribeCallback(function($ticks) {

 printf("${ticks}\n");

 }, function() {}, function() use ($process) {

 echo $process->getOutput();

 });

$loop->run();

The Process class takes in its constructor a full command it's supposed to
execute. Then, calling Process::start() will start the subprocess in an
asynchronous non-blocking way, just like we did before. We can check for
available output anytime with the getOutput() method. Then,
the isSuccessful() and isRunning() methods return true when the process

has successfully terminated (return code equals 0), and whether the process is
still running, respectively.

The takeWhile() operator

We have also used one new operator, called takeWhile(). This operator
takes a predicate Closure as an argument, which is executed for every value it
receives. If the predicate returns true, it passes the value down the chain (by
calling onNext() on its observer), but if the predicate returns false, it
signals onComplete(), and therefore, the loop ends because there are no other
observers subscribed to it. It's exactly the same situation we saw earlier in
this chapter, when we used disposable to unsubscribe
from IntervalObservable and end the app. The following Marble diagram
represents takeWhile() operator in RxJS
(http://reactivex.io/rxjs/class/es6/Observable.js):

If we run this example, it'll print a few ticks, then dump the entire response
and end. This is exactly what we need. So, we can remove the temporary
printf() statement and use this subprocess in our Reddit reader app.

http://reactivex.io/rxjs/class/es6/Observable.js

Implementing subprocesses into the Reddit
reader app
This final improvement will require some modifications to the existing code.
First, the method refreshList() doesn't need to use either CURLObservable
or JSONDecodeOperator, because we'll read the response from the instance of
the Process class directly.

Also, both the main Subject class checking for user input and the observer
checking whether the subprocess has terminated need to use the same
instance of Scheduler. It's easier to share the same instance
of IntervalObservable than create a new one every time we want to refresh
the list of posts, so we'll keep its reference as a property class in $this-
>intervalObservable:

protected function refreshList() {

 $url = sprintf(self::API_URL, $this->subreddit);

 $this->process = new Process(

 'php wrap_curl.php curl '.$url);

 $this->process->start();

 $this->intervalObservable

 ->takeWhile(function() {

 return $this->process->isRunning();

 })

 ->subscribeCallback(null, null, function() {

 $jsonString = $this->process->getOutput();

 if (!$jsonString) {

 return;

 }

 $response = json_decode($jsonString, true);

 $articles = $response['data']['children'];

 // ... the rest is unchanged

Then, when we want to quit the app, we have to make sure the subprocess has
already terminated, or eventually terminate by ourselves. If we don't
terminate it, the PHP interpreter will have to wait until it finishes.

This is what the updated observer checking for the quit entry will look like:

$this->subject->filter(function($value) {

 return strval($value) == 'q';

})

->take(1)

->subscribeCallback(null, null,

 function() use ($disposable, $output, $stdin) {

 fclose($stdin);

 $output->writeln('<comment>Good bye!</comment>');

 if ($this->process && $this->process->isRunning()) {

 $this->process->stop();

 }

 $disposable->dispose();

 }

);

So, at the end, this all allows us to quit (or perform any other action) any time
we want, even when cURL is downloading data at that very moment, because
we run the download as a separate non-blocking process that we check
periodically for a response in the same event loop as all user input.

Note

In Chapter 6, PHP Streams API and Higher-Order Observables, we'll see
how to use StreamSelectLoop to directly read from file handles created with
fopen().

Types of disposable classes
Throughout this chapter, we've been subscribing and unsubscribing to
Observables a lot. Although we know what disposables are, we haven't talked
about what different types of disposable classes are available out of the box
in RxPHP.

We're not going to write examples for each one of them, because these are
very simple classes and if you're not sure about their implementation details,
feel free to check their source code.

BinaryDisposable: A class internally containing two more disposable
objects. Then by calling its dispose() it automatically calls dispose()
on the two internal disposables as well.
CallbackDisposable: This class wraps a callable that is executed later
when calling dispose().
CompositeDisposable: A collection of disposables that'll be disposed all
together.
EmptyDisposable: A dummy disposable that does nothing. Sometimes
it's required to pass or return an instance of DisposableInterface even
when we have nothing to dispose.
RefCountDisposable: A disposable containing another disposable and a
counter that'll be disposed when the counter reaches 0 (basically the
same principle as automatic reference counting in programming
languages).
ScheduledDisposable: This class wraps another disposable that won't
be disposed directly but scheduled with Scheduler::schedule()
instead.
SerialDisposable: A collection of disposables where, when adding a
new disposable, the previous one is automatically disposed (the
Scheduler::scheduleRecursive() method returns this type of
disposable).
SingleAssignmentDisposable: A wrapper around another disposable
that can be assigned only once. If we try to assign this disposable twice,
it'll result in exception.

Note

Since RxPHP is based mostly on RxJS 4, it uses its style of disposables. If
you're coming from RxJS 5, you're used to always using only Subscription
class, which is very similar to CompositeDisposable.

Summary
In this chapter, we looked in more depth at how to use disposables and
operators, how these work internally, and what it means for us. We also saw
how to use Observable::create() and Observable::defer() to create new
Observables with custom logic.

The app that we have built was meant to be a simple Reddit reader that
combines all the aspects of RxPHP we've learned so far. We also saw how we
can achieve a truly responsive app by making all long running tasks non-
blocking. We used Symfony Console component to handle user input and
output from terminal. Also, we used Symfony Process component to easily
spawn and have control over subprocesses.

We also looked at a couple of new classes from RxPHP, such as
ConnectableObservable, CompositeDisposable, or takeWhile() operator.

In the following chapter, we'll work with some event-based systems used in
popular PHP frameworks, such as Symfony, Silex, and Zend Framework, and
see how we can combine them with the principles of reactive programming.

Chapter 4. Reactive versus a
Typical Event-Driven Approach
So far, we've been focused mainly on CLI applications. In this chapter, we'll
apply what we've already learned to a typical component of all web
frameworks, and add a little on top of that. We're going to use the Symfony
EventDispatcher component, which is an independent library that can be
used in any framework.

Its main purpose is dispatching events during an application's lifetime, and
easy extendability. Most notably, it's a core building block of the Symfony3
framework and the Silex micro-framework.

In this chapter, we're going to do the following:

Have a look at error handling in RxPHP and explain
the retry(), retryWhen(), and catchError() operators. We'll see how
these three relate to what we've talked about in the previous chapter.
We'll see how to combine two Observables using concat() and merge()
operators. Then we'll also have a look at concatMap() and its very
common use-case with ordered HTTP requests.
Have a quick introduction to EventDispatcher component using
examples.
Write a drop-in replacement for the default EventDispatcher class
called ReactiveEventDispatcher that's built on the top of the
default EventDispatcher, with a reactive approach using RxPHP.
See how we can use Subjects to construct Observable chains on the fly.
Enhance our event dispatcher implementation using Observables instead
of closures as event listeners.
Test our event-dispatcher implementation on the same examples we
used when introducing the default EventDispatcher.

Before we jump into the EventDispatcher component, we should also talk
about how to handle error states in operator chains.

We've worked with onError handlers already in Chapter 2 , Reactive
Programming with RxPHP, with CURLObservable, for example. However, we
haven't seen how to gracefully recover from errors and what unexpected
implications these might have.

Handling error states in operator
chains
If we go back to Chapter 2 , Reactive Programming with RxPHP,
and CURLObservable, we know that it emits onError when it wasn't able to
download any data. The question is, what if we want to try downloading the
URL again? And even more interestingly, repeat the failed attempt every few
seconds.

Subscribing only to onError signals is simple with the second parameter to
the subscribeCallback() method:

(new CURLObservable('https://example.com'))

 ->subscribeCallback(null, function($e) { ... });

It's obvious that nesting another CURLObservable into onError handler is
probably not an option. This is exactly what the retry() operator is designed
for.

The retry() operator
When the retry() operator receives an onError signal, it captures it and tries
to resubscribe to its source Observable. It takes as an argument the number of
times it tries to resubscribe until it passes the error signal down the operator
chain.

Let's rewrite the preceding example with the retry() operator:

(new CURLObservable('https://example.com'))

 ->retry(3)

 ->subscribe(new DebugSubject());

This tries to resubscribe to the CURLObservable three times,
until DebugSubject receives the onError signal. By default, the retry()
operator takes no parameters and tries to resubscribe infinitely.

Well, testing error states on third-party web services isn't very convenient,
because we can't force it to return error states. For this reason, we're better off
using the map() operator to trigger onError signals from now on.

To our advantage, the map() operator calls its callable wrapped inside a
try...catch block, so any exception thrown will be turned into an onError
signal:

// snippet from Rx\Operator\MapOperator class

try {

 $value = call_user_func_array($this->selector, [$nextValue]);

} catch (\Exception $e) {

 $observer->onError($e);

}

Consider the following code, which is supposed to print numbers from 1 to 6,
but fails every time on number 3:

// retry_01.php

Observable::range(1, 6)

 ->map(function($val) {

 if ($val == 3) {

 throw new \Exception('error');

 }

 return $val;

 })

 ->retry(3)

 ->subscribe(new DebugSubject());

Now, try to guess what happens before looking at the actual output, and keep
in mind what we talked about in Chapter 03 , Writing a Reddit Reader with
RxPHP, in the section called A closer look at Operator chains and A closer
look on subscribing to Observables:

$ php retry_01.php

09:18:32 [] onNext: 1 (integer)

09:18:32 [] onNext: 2 (integer)

09:18:32 [] onNext: 1 (integer)

09:18:32 [] onNext: 2 (integer)

09:18:32 [] onNext: 1 (integer)

09:18:32 [] onNext: 2 (integer)

09:18:32 [] onError (Exception): error

It prints only the numbers 1 and 2 three times and then ends with onError.

What might be confusing at first is that common sense tells us to expect this
code to print the numbers 1, 2, 4, 5, and 6. Number 3 throws an exception, but
thanks to the retry() operator it continues with the next value.

However, this is not what happens, due to the fact that retry() resubscribes
to its source Observable, and emitting an onError signal always makes the
chain stop propagating further values. In Chapter 03 , Writing a Reddit
Reader with RxPHP, we saw that subscribing to an Observable triggers
generation of the entire chain of Observables that subscribe to each other in
the order they were defined. At the end, it subscribes to the source
Observable that starts emitting values.

We've encountered the exact same situation here. When the map() operator
signals onError, it's immediately resubscribed thanks to the retry()
operator, which in turn resubscribes to RangeObservable and starts emitting
values from the beginning.

This is nicely demonstrated by the following marble diagram for this operator
(note the red and yellow marbles):

Marble diagram representing the retry() operator, from
http://reactivex.io/documentation/operators/retry.html

If we wanted to simulate a situation where we get numbers from 1 to 6 except
number 3, we could make an external variable, $count, and increment it,
instead of relying on values coming from RangeObservable. To stop emitting
values, we can use takeWhile(), which calls onCompleted when its callable
returns false:

// retry_05.php

$count = 0;

Rx\Observable::range(1, 6)

 ->map(function($val) use (&$count) {

 if (++$count == 3) {

 throw new \Exception('error');

 }

 return $count;

 })

 ->retry(3)

 ->takeWhile(function($val) {

 return $val <= 6;

 })

 ->subscribe(new DebugSubject());

The output is then as we expected:

$ php retry_05.php

14:18:01 [] onNext: 1 (integer)

14:18:01 [] onNext: 2 (integer)

14:18:01 [] onNext: 4 (integer)

14:18:01 [] onNext: 5 (integer)

14:18:01 [] onNext: 6 (integer)

14:18:01 [] onCompleted

CURLObservable and the retry() operator

We can make a simple test scenario that is closer to a real world application.
We'll take our CURLObservable and try to repeat an HTTP request three
times. We'll choose any non-existing URL to be sure it fails every time to see
how the error is propagated through the operator chain when using retry():

// retry_04.php

Rx\Observable::defer(function() {

 echo "Observable::defer\n";

 return new CurlObservable('https://example.com123');

 })

 ->retry(3)

 ->subscribe(new DebugSubject());

We've already seen the Observable::defer() static method in Chapter 3,
Writing a Reddit Reader with RxPHP. We're using it here to show that the
retry() operator causes resubscription to the source Observable.

This example prints to the console the following output:

$ php retry_04.php

Observable::defer()

Observable::defer()

Observable::defer()

13:14:20 [] onError (Exception): Unable to download https://ex...

We can see that it took three iterations before the error (in fact an exception)
reached DebugSubject.

The retryWhen() operator
Similar to retry(), there's also an operator called retryWhen(), which in
contrast to retry(), doesn't re-subscribe immediately. Operator retryWhen()
takes as an argument a callable that returns another Observable. This
Observable is then used when the onError signal occurs, to schedule
resubscription.

Marble diagram representing the retryWhen() operator, from
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html#instance-
method-retryWhen

CURLObservable and the retryWhen() operator

For example, we can consider our CURLObservable once more and imagine
we want to repeat the failed request after a one-second delay. Since the
functionality of retryWhen() is a little more complicated, we'll start with an

example:

// retry_when_01.php

$loop = new \React\EventLoop\StreamSelectLoop();

$scheduler = new \Rx\Scheduler\EventLoopScheduler($loop);

(new CURLObservable('https://example.com123'))

 ->retryWhen(function($errObs) use ($scheduler) {

 $notificationObs = $errObs

 ->delay(1000, $scheduler)

 ->map(function() {

 echo "\$notificationObs\n";

 return true;

 });

 return $notificationObs;

 })

 ->subscribe(new DebugSubject(), $scheduler);

$scheduler->start();

Note

We need to use an event loop to schedule the delay() operator.

The callable to retryWhen() takes an Observable as an argument and has to
return an Observable. Then, when an error signal occurs, it's pushed to
$errObs as onNext so we can decide based on the type of error what we want
to do. Depending on the emissions from the returned $notificationObs we
can control what happens next:

onNext: When $notificationObs emits the onNext signal, the
retryWhen() operator resubscribes to its source Observable. Note that
the value emitted is not important.
onError: The error is propagated further down the operator chain.
onComplete: The onComplete signal is propagated further down the
operator chain.

What the preceding example does should be obvious. When CURLObservable
fails (emits onError), the retryWhen() operator waits one second, thanks to
the delay() operator, and then resubscribes, which will

make CURLObservable try to download the URL again indefinitely. The
output from this example looks like the following:

$ php retry_when_01.php

onNext

onNext

onNext

...

Since the retryWhen() operator is slightly more complicated, we can have a
look into its internals to understand why it works the way it works:

It creates an instance of Subject and stores its reference in a variable
called $errors. Subjects work as both Observables and observers. It
needs to use Subject, because it's important to be able to manually
trigger signals such as onNext, which is not possible with just an
Observable.
When the operator calls its callable, it passes along the $errors-
>asObservable() and expects to receive an Observable, which is stored
in another variable, called $when. The method asObservable() wraps
Subject with an AnonymousObservable, and thus hides that it is, in fact,
an instance of Subject.
Then, CallbackObserver is subscribed to $when, which can later
resubscribe to the source Observable of this operator.
This means that we have the "head" and "tail" of the chain of
Observables in variables $errors and $when, respectively.
Later on, when an onError signal is received, the operator
calls $errors->onNext(), which sends the value through the chain of
Observables. In our case, it goes through the delay() operator.

If we rewrote the preceding points into an actual heavily simplified code it
would look like the following:

$errors = new Subject();

$when = call_user_func($callable, $errors->asObservable());

$subscribe = function() use ($observable, $observer, $errors) {

 $observable->subscribe(new CallbackObserver(

 [$observer, 'onNext'],

 function() use ($errors) {

 $errors->onNext($errors);

 }),

 [$observer, 'onCompleted']

);

};

$when->subscribe(new CallbackObserver(function() use ($subscribe)

{

 $subscribe();

}));

$subscribe();

This operator doesn't care about onNext or onComplete, and passes them right
into $observer. The only signal it needs to handle is onError, which
calls $errors->onNext(), and therefore triggers the chain of Observables,
eventually resulting in resubscribing to the source Observable inside
the $when->subscribe() callable.

This technique of using an instance of Subject to be able to manually trigger
signals and at the same time subscribe observers to it is very useful. We're
going to use it in a moment, when we implement our event dispatcher.

CURLObservable and controlled number of retries

When talking about the retry() operator, we made a demo where we tried to
download a URL three times and then failed. The number of retries was fixed
to 3.

We can create the same example with the retryWhen() operator while having
more control if and when we want to retry the HTTP request. Consider the
following example where we make three attempts to download a URL and
then propagate the error further:

// retry_when_02.php

use Rx\Observable;

$loop = new \React\EventLoop\StreamSelectLoop();

$scheduler = new \Rx\Scheduler\EventLoopScheduler($loop);

(new CURLObservable('https://example.com123'))

 ->retryWhen(function($errObs) use ($scheduler) {

 echo "retryWhen\n";

 $i = 1;

 $notificationObs = $errObs

 ->delay(1000, $scheduler)

 ->map(function(Exception $val) use (&$i) {

 echo "attempt: $i\n";

 if ($i == 3) {

 throw $val;

 }

 $i++;

 return $val;

 });

 return $notificationObs;

 })

 ->subscribe(new DebugSubject(), $scheduler);

$loop->run();

In this example, we make three attempts where each is delayed by one second
and then re-throw the exception, which is caught by the map() operator and
passed as an onError signal. Since $notificationObs sends the onError
signal, the retryWhen() operator passes this error further as explained
previously. We also print the string retryWhen to prove that the callable is
called just once even when there're multiple retries.

The output from this example is the following:

$ php retry_when_02.php

retryWhen

attempt: 1

attempt: 2

attempt: 3

14:36:13 [] onError (Exception): Unable to download https://ex...

What's interesting about this demo is that it doesn't need to end with the error
at all. We could use $notificationObs to signal onComplete instead.

The inner callable could look, for example, like the following code:

// retry_when_03.php

...

$notificationObs = $errObs

 ->delay(1000, $scheduler)

 ->map(function(Exception $val) use (&$i) {

 echo "attempt: $i\n";

 $i++;

 return $val;

 })

 ->take(3);

...

In contrast to the previous example we're not re-throwing the exception, and
just emitting onComplete instead:

$ php retry_when_03.php

retryWhen

attempt: 1

attempt: 2

attempt: 3

15:30:01 [] onCompleted

This might be useful in situations where even multiple failed retries don't
necessarily mean an error state.

The catchError() operator
The operator catchError() also handles only error signals. When it receives
an onError, it calls a callable that returns an Observable, which is then used
to continue the Observable sequence instead of the source Observable.

Consider the following example:

use Rx\Observable;

Observable::range(1,6)

 ->map(function($val) {

 if ($val == 3) {

 throw new Exception();

 }

 return $val;

 })

 ->catchError(function(Exception $e, Observable $sourceOb) {

 return Observable::just(42);

 })

 ->subscribe(new DebugSubject());

In this example, the onError signal is captured by catchError() and, instead
of ending the entire Observable sequence, it continues with a single value,
thanks to Observable::just(), and then ends with onComplete:

$ php catch_01.php

06:43:04 [] onNext: 1 (integer)

06:43:04 [] onNext: 2 (integer)

06:43:04 [] onNext: 42 (integer)

06:43:04 [] onCompleted

The concat() and merge() operators
With retry() and retryWhen() we've stumbled upon operators that take as
parameters other Observables and work with their emissions. Combining
multiple Observables into a single chain is a common practice mostly in
RxJS due to the asynchronous nature of JavaScript by design. In RxPHP we
don't use them as often, but it's worth having a quick look at them.

The merge() operator
In order to merge two Observables into a single one that emits all values from
both of them (including onError signals) we can use the merge() operator.

Marble diagram representing the merge() operator, from
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html#static-
method-merge

As we can see from the marble diagram, this operator reemits values from
source and the merged Observables. This means it subscribes to both of them
and emits values as they arrive.

To better understand how it works, we can make a simple example with two
interval Observables where each emits three values with different delays:

// merge_01.php

use Rx\Observable;

$loop = new \React\EventLoop\StreamSelectLoop();

$scheduler = new \Rx\Scheduler\EventLoopScheduler($loop);

$merge = Observable::interval(100)

 ->map(function($value) {

 return 'M' . $value;

 })

 ->take(3);

$source = Observable::interval(300)

 ->map(function($value) {

 return 'S' . $value;

 })

 ->take(3)

 ->merge($merge)

 ->subscribe(new DebugSubject(), $scheduler);

$loop->run();

The $merge Observable emits its values faster than $source. We also prefix
each value to mark where it came from so the output from this example is the
following:

$ php merge_01.php

22:00:28 [] onNext: M0 (string)

22:00:28 [] onNext: M1 (string)

22:00:28 [] onNext: S0 (string)

22:00:28 [] onNext: M2 (string)

22:00:29 [] onNext: S1 (string)

22:00:29 [] onNext: S2 (string)

22:00:29 [] onCompleted

We can see that the values are mixed together. However, there's only one
onComplete signal when both Observables complete, so overall it behaves
like a single Observable.

The concat() operator
In contrast to merge() sometimes we might want to combine two
Observables but first emit all values from the first Observable and, when it
completes, subscribe to the second one and emit all values from that as well.
For this reason, there's also the concat() operator:

Marble diagram representing the concat() operator, from
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html#instance-
method-concat

We can take the same example as we made for merge() and just switch
the merge() operator to concat():

// concat_01.php

use Rx\Observable;

$loop = new \React\EventLoop\StreamSelectLoop();

$scheduler = new \Rx\Scheduler\EventLoopScheduler($loop);

$concat = Observable::interval(100)

 ->map(function($value) {

 return 'C' . $value;

 })

 ->take(3);

$source = Observable::interval(300)

 ->map(function($value) {

 return 'S' . $value;

 })

 ->take(3)

 ->concat($concat)

 ->subscribe(new DebugSubject(), $scheduler);

$loop->run();

Since concat() should subscribe to the source and concatenated Observables
one after another we should expect to receive first all values from the source
Observable and, when it completes, all values from $concat Observable.

$ php concat_01.php

22:25:45 [] onNext: S0 (string)

22:25:45 [] onNext: S1 (string)

22:25:46 [] onNext: S2 (string)

22:25:46 [] onNext: C0 (string)

22:25:46 [] onNext: C1 (string)

22:25:46 [] onNext: C2 (string)

22:25:46 [] onCompleted

Even though the concatenated Observable emits values faster than the source
Observable, its values follow after all the values from source.

The concatMap() and flatMap() operators
Both the merge() and concat() operators have their *map() variants. In
particular these are flatMap() and concatMap(). These operators combine
the functionality of merge()/concat() with the map() operator. If we look at
both examples we made a moment ago, we'll see that we need to know the
inner Observable beforehand. This means the inner Observable is passed to
concat()/merge() once when creating the Observable chain.

We'll pick one of the two operators and explain its benefits in an example.

Let's imagine we want to make three HTTP requests one after another. This
looks like an ideal use case for the concat() operator. However, each request
is going to be dependent on the result from the previous one, so we need to
use concatMap() instead because its callable takes the current value from the
source Observable as a parameter and returns an Observable that'll be
concatenated to the chain:

// concat_map_01.php

use Rx\Observable;

function createCURLObservable($num) {

 $url = 'http://httpbin.org/get?num=' . $num;

 echo "$url\n";

 return (new CURLObservable($url))

 ->filter(function($response) {

 return is_string($response);

 });

}

$source = Observable::emptyObservable()

 ->concat(createCURLObservable(rand(1, 100)))

 ->concatMap(function($response) {

 $json = json_decode($response, true);

 return createCURLObservable(2 * $json['args']['num']);

 })

 ->concatMap(function($response) {

 $json = json_decode($response, true);

 return createCURLObservable(2 * $json['args']['num']);

 })

 ->subscribe(new DebugSubject());

We're using the http://httpbin.org/get web service that serves as a test server
and returns the request we sent as a JSON string.

We used Observable::emptyObservable() to create an empty Observable
that completes immediately, and chain it with one concat() and two
concatMap() operators. Each concatMap() then decodes the JSON from the
previous requests, takes its num parameter multiplied by 2 and resends the
HTTP request.

Then, from the console output, we can see the requests are called in order and
the random num parameter created in the concat() operator call is multiplied
by 2 with every request:

$ php concat_map_01.php

http://httpbin.org/get?num=51

http://httpbin.org/get?num=102

http://httpbin.org/get?num=204

22:54:37 [] onNext: {

 "args": {

 "num": "204"

 },

 "headers": {

 "Accept"... (string)

22:54:37 [] onCompleted

With flatMap() the example would be the same. However, since PHP isn't
asynchronous like JavaScript, flatMap() operator isn't as useful in this
particular use case.

We'll have a look at more operators that combine multiple Observables in
Chapter 6, PHP Streams API and Higher-Order Observables.

http://httpbin.org/get

Writing a reactive event dispatcher
The Symfony EventDispatcher component is a PHP library for exchanging
messages between objects. It's based on the Mediator design pattern (
https://en.wikipedia.org/wiki/Mediator_pattern), and its implementation is
relatively simple.

A very common scenario is when we have an application that we want to
make extendable via plugins. In this case, we'd create a single instance of
EventDispatcher and let plugins listen to various events. Each event is an
object that can hold references to other objects as well. This is what the
Symfony3 framework does extensively.

https://en.wikipedia.org/wiki/Mediator_pattern

A quick introduction to EventDispatcher
If you haven't done so already, install the Event Dispatcher component via
composer:

$ composer require symfony/event-dispatcher

First, we're going to have a look at how the default implementation is used in
practice, so we can later compare it to our reactive implementation, and check
that both work the same from a developer's perspective while the internal
implementation is different.

Working with event listeners

In the most basic situation, we just want to set up a couple of listeners and
dispatch events:

// event_dispatcher_01.php

use Symfony\Component\EventDispatcher\EventDispatcher;

use Symfony\Component\EventDispatcher\Event;

$dispatcher = new EventDispatcher();

$dispatcher->addListener('my_action', function() {

 echo "Listener #1\n";

});

$dispatcher->addListener('other_action', function() {

 echo "Other listener\n";

});

$dispatcher->addListener('my_action', function() {

 echo "Listener #2\n";

});

$dispatcher->dispatch('my_action');

We created three event listeners to two different events, my_action
and other_action. Then, with $dispatcher->dispatch(), we tell the event
dispatcher to notify all event listeners that the event called my_action
occurred.

The output in the console should be obvious:

$ php event_dispatcher_01.php

Listener #1

Listener #2

The dispatch() method takes an optional second argument with an instance
of Event class that can contain further information about the event. Event
listeners can also modify event data if necessary. Also, all callables receive
exactly one argument with the event object, which comes from the initial call
to the dispatch() method. Since we didn't provide any event object, our
callables don't need to accept any parameter.

Note that the event dispatcher doesn't need to know what events it supports,
as they are created on the fly. This also means you can accidentally try to
dispatch a non-existent event:

$dispatcher->dispatch('foo_my_action');

This won't throw an error, but no event will be dispatched.

The EventDispatcher class supports two important features:

Priority: By default, listeners are executed in the order they subscribe to
the event dispatcher. We can alter this behavior by supplying a third
argument to the addListener() method with priority for this particular
listener (it's 0 by default). Listeners with higher priority are executed
first. If more listeners have the same priority, then the order they were
added matters.
Stopping event propagation: In some scenarios, it's important to be
able to stop propagating a particular event to subsequent listeners. For
this reason, the Event class has a method called stopPropagation().
The event dispatcher is then responsible for not propagating this event
further.

These two features can be used in a situation such as the following:

// event_dispatcher_02.php

$dispatcher = new EventDispatcher();

$dispatcher->addListener('my_action', function(Event $event) {

 echo "Listener #1\n";

});

$dispatcher->addListener('my_action', function(Event $event) {

 echo "Listener #2\n";

 $event->stopPropagation();

}, 1);

$dispatcher->dispatch('my_action', new Event());

The first event listener should be called after the second one because it has
higher priority, but it stops further propagation of this event using $event-
>stopPropagation(), so it's never invoked.

The console output is then very short:

$ php event_dispatcher_02.php

Listener #2

Working with event subscribers

While addListener() subscribes to a single event listener, there's also
the addSubscriber() method, which accepts an instance of a class
implementing EventSubscriberInterface and subscribes to multiple events
at once. In fact, addSubscriber() uses addListener() internally to add
listeners. Sometimes it's just easier to wrap all listeners into a single class
than add them one by one.

Throughout this and upcoming examples in this chapter, we're also going to
use a custom Event class in order to properly test that both the default and
our reactive implementations work the same.

First, let's declare our event class:

// MyEvent.php

use Symfony\Component\EventDispatcher\Event;

class MyEvent extends Event {

 private $name;

 private $counter = 0;

 public function __construct($name = null, $counter = 0) {

 $this->name = $name;

 $this->counter = $counter;

 }

 public function getCounter() {

 return $this->counter;

 }

 public function inc() {

 $this->counter++;

 }

 public function __toString() {

 return sprintf('%s (%d)', $this->name, $this->counter);

 }

}

It's a pretty simple class. We'll use the inc() method to see that all the
listeners work with the same instance of MyEvent. We also use
the __toString() magic method so we can convert this class to string just by
typecasting it.

Now, for demonstration purposes, we'll declare a MyEventSubscriber class
with three event listeners:

// MyEventSubscriber.php

use Symfony\Component\EventDispatcher\EventDispatcher;

use Symfony\Component\EventDispatcher\Event;

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

class MyEventSubscriber implements EventSubscriberInterface {

 public static function getSubscribedEvents() {

 return [

 'my_action' => [

 ['onMyActionA'],

 ['onMyActionAgain', 1],

],

 'other_action' => 'onOtherAction',

];

 }

 public function onMyActionA(MyEvent $event) {

 $event->inc();

 echo sprintf('Listener [onMyAction]: %s\n', $event);

 }

 public function onMyActionAgain(MyEvent $event) {

 $event->inc();

 echo sprintf('Listener [onMyActionAgain]: %s\n', $event);

 }

 public function onOtherAction(Event $event) { }

}

The interface EventSubscriberInterface requires only the static
method getSubscribedEvents(), which returns an associative array of event
names and their appropriate callables.

This example class declares two listeners for the my_action event (where the
second one has higher priority than the first) and one listener for
the other_action event.

Subscribing to this class works the same way as subscribing to listeners:

$dispatcher = new EventDispatcher();

$dispatcher->addSubscriber(new MyEventSubscriber());

$dispatcher->dispatch('my_action', new MyEvent('my-event'));

This time, the example also prints a string representation of the event:

$ php event_dispatcher_03.php

Listener [onMyActionAgain]: my-event (1)

Listener [onMyAction]: my-event (2)

This is yet another thing we need to handle, because we want to allow
defining event Observables in an event subscriber class.

Now we know how the default EventDispatcher class can be used and what
use cases it's supposed to fulfill. Our goal will be to write our own
implementation based on RxPHP and reactive programming.

Writing ReactiveEventDispatcher with
RxPHP
Event dispatchers need to implement an EventDispatcherInterface
interface that defines all the methods we've seen previously, and we'll also
add a few more. Luckily for us, we can reuse a large part of the
default EventDispatcher class. For example, the removeListener()
or removeSubscriber() methods will work without any modification.

Internal representation of event listeners as observers

The original EventDispatcher had a very easy task. On the dispatch() call,
it just sorted the array of listeners for that particular event by their priority
and evaluated them one by one, in a loop:

// snippet from Symfony\Component\EventDispatcher\EventDispatcher

foreach ($listeners as $listener) {

 if ($event->isPropagationStopped()) {

 break;

 }

 call_user_func($listener, $event, $eventName, $this);

}

In our case, we're going to represent all event listeners as observers. In fact,
when we add a new event listener, we'll transform its callable into an
observer. Then, when calling dispatch(), we'll create a chain of Observables
where all observers are already subscribed at specific points. Of course, we
also need to handle the isPropagationStopped() condition by ourselves.

For example, let's consider the simplest usage of the event dispatcher, as
shown previously:

$dispatcher->addListener('my_action', function() {

 echo "Listener #1\n";

});

$dispatcher->addListener('my_action', function() {

 echo "Listener #2\n";

});

We have to turn these two event listeners into a chain of Observables while
making sure that, before each event listener is executed, we check that the
event object hasn't got the stop propagation flag set:

// reactive_dispatcher_03.php

$subject = new Subject();

$tail = $subject->filter(function(Event $event) {

 return !$event->isPropagationStopped();

});

$tail->subscribe(new CallbackObserver(function(Event $event) {

 echo "Listener #1\n";

 $event->stopPropagation();

}));

$tail = $tail->filter(function(Event $event) {

 return !$event->isPropagationStopped();

});

$tail->subscribe(new CallbackObserver(function(Event $event) {

 echo "Listener #2\n";

}));

$subject->onNext(new Event());

We're using Subject here for the same reason as we explained earlier in the
chapter when we talked about the retryWhen() operator. Still, let's explain
this code in more detail:

The $subject variable holds a reference to the "head" of the chain of
Observables
The $tail variable always holds a reference to the last Observable in
the chain. This is where we further chain more Observables, and where
we append the filter() operator that checks for stopped events.
When we want to dispatch an event, we just need to call $subject-
>onNext().

To be extra clear what the current chain of Observables looks like, we can
represent it as a tree structure:

Now we just need to turn all this into a real PHP class.

Writing a ReactiveEventDispatcher class
The good thing is that we can actually reuse a lot of the logic already written
in EventDispatcher and just overload certain methods that need to work
differently.

First, we'll just write a class stub to see what's waiting ahead of us, and talk a
little about each method:

// ReactiveEventDispatcher.php

class ReactiveEventDispatcher extends EventDispatcher {

 /**

 * @var Subject[];

 */

 private $subjects = [];

 public function dispatch($eventName, Event $event = null) {}

 public function addListener($eventName, $listener, $prio=0) {}

 public function addObservable($eventName, $create, $prio=0) {}

 public function addSubscriber($subscriber) {}

 private function observerFromListener($listener) {}

 private function getSubject($eventName) {}

}

Only the methods dispatch(), addListener(), and addSubscriber()
from EventDispatcher need to be overwritten; the rest can remain as they
are. We also added three more methods to help us deal with Observables.

Let's see what the purpose of each component is:

$subjects: An associative array that holds references to all heads of
Observable chains (their Subjects).
addListener(): We already know this method from previous examples.
However, now the method also accepts observers as event listeners.
addObservable(): This is a method that lets us append an Observable to

a specific point in the chain of Observables generated by getSubject().
addSubscriber(): This subscribes to multiple events with the
subscription class. It uses the addObserver() method.
dispatch(): This method takes the instance of Subject for this
particular event and calls onNext(), with the event object as a
parameter.
observerFromListener(): A helper method that transforms any listener
into an observer. Basically, this just wraps every callable with
a CallbackObserver object.
getSubject(): Our event dispatcher is going to work with Subjects.
This method internally sorts an array of listeners by their priority and
constructs a chain of Observables from them. It'll also keep Subjects in
the $subjects associative array, to be easily reused without necessarily
creating the Observable chain all over again on every dispatch() call.

So, we have a pretty good picture of how this event dispatcher is going to
work, and we can start implementing each method.

Adding event listeners
The first two methods are going to be addListener()
and observerFromListener(). The first one is dependent on the second one,
so we'll write both of them at the same time:

// ReactiveEventDispatcher.php

class ReactiveEventDispatcher extends EventDispatcher {

 /**

 * @param string $eventName

 * @param callable|ObserverInterface $listener

 * @param int $prio

 * @throws Exception

 */

 public function addListener($eventName, $listener, $prio = 0) {

 $observer = $this->observerFromListener($listener);

 parent::addListener($eventName, $observer, $prio);

 unset($this->subjects[$eventName]);

 }

 /**

 * @param callable|ObserverInterface $listener

 * @return ObserverInterface

 */

 private function observerFromListener($listener) {

 if (is_callable($listener)) {

 return new CallbackObserver($listener);

 } elseif ($listener instanceof ObserverInterface) {

 return $listener;

 } else {

 throw new \Exception();

 }

 }

 /* rest of the class */

}

Note

In the rest of the examples in this chapter, we're also going to include doc
blocks and type hints for each method to clarify what arguments it accepts.

The observerFromListener() method checks the runtime type of $listener
and always turns it into an instance of observer.

The method addListener() uses observerFromListener() internally, and
then calls its parent's addListener() with the observer as an argument, even
though it originally accepted only callables. The parent method stores the
listener in a nested associative array by event name and priority. Since the
parent's code is pretty universal, we don't need to make any changes to it and
will leave it as is.

Note that, after we call the parent addListener(), we remove a Subject from
the $subjects array for this particular event. This is because we modified the
Observable chain for this event and it needs to be created from scratch. This
happens later, when calling the dispatch() method.

Adding Observables
Speaking of listeners, we can now also implement addObservable(), which
is a slightly modified version of addListener(). This method is going to be
used differently than addListener(), so it deserves special attention:

class ReactiveEventDispatcher extends EventDispatcher {

 /**

 * @param string $evtName

 * @param callable $create

 * @param int $prio

 */

 public function addObservable($evtName, $create, $prio=0) {

 $subject = new Subject();

 $create($subject->asObservable());

 $this->addListener($evtName, $subject, $prio);

 }

 /* rest of the class */

}

We create an instance of Subject and call asObservable() to let the user-
defined callable append its operators to it. Then we call addListener() with
the $subject variable that we explained a moment ago. Again, this is the
same technique we described with the retryWhen() operator.

This method is interesting, because it lets us add a "sub-chain" of
Observables as a listener. Consider the following code:

$dispatcher->addObservable('my_action', function($observable) {

 $observable

 ->map(function($value) { return $value; })

 ->filter(function($value) { return true; })

 ->subscribe(new DebugSubject());

});

If we represent this code as a tree structure as we did before, inside the
$dispatcher, it will look like the following (this structure is generated later
inside the getSubject() method):

Event "my_action" with two event listeners

So, this event listener appends a series of operators in its callable and then
subscribes to it. In the addObservable() method, we pass only the $subject
itself to the addListener(), which is later appended to the filter()
operator, when calling dispatch(). This works thanks to the fact that
Subjects work as observers as well and can subscribe to Observables.

This is the major benefit of writing our custom ReactiveEventDispatcher.
We're using reactive programming to easily manipulate events that interest us
in a very straightforward way. If we used the default event dispatcher, we'd
have to put all the listener-specific conditions inside the callable.

Adding event subscribers
Similar to the original EventDispatcher, we want to be able to subscribe
multiple listeners to multiple events at once, using a subscriber class.
However, we're also going to support adding listeners as Observables, just
like we did with addObservable(). This is not going to work without
overloading the parent's addSubscriber() method and handling Observables
in a special way.

Basically, we need to call addObservable() instead of the addListener()
method:

First, let's define an interface that we can use to recognize an event subscriber
class that also defines Observables as listeners:

// EventObservableSubscriberInterface.php

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

interface EventObservableSubscriberInterface extends

 EventSubscriberInterface {

 public static function getSubscribedEventsObservables();

}

Now, addSubscriber() can check whether the class is an instance of this
interface and, if it is, process all its listeners as if they were Observables:

use EventObservableSubscriberInterface as RxEventSubscriber;

class ReactiveEventDispatcher extends EventDispatcher {

 /**

 * @param EventSubscriberInterface $subscriber The subscriber

 */

 public function addSubscriber(EventSubscriberInterface $sub) {

 parent::addSubscriber($sub);

 if ($sub instanceof RxEventSubscriber) {

 $events = $sub->getSubscribedEventsObservables();

 foreach ($events as $evt => $params) {

 if (is_callable($params)) {

 $this->addObservable($evt, $params);

 } else {

 foreach ($params as $listener) {

 $prio = isset($listener[1]) ? $listener[1] : 0;

 $this->addObservable($evt, $listener[0], $prio);

 }

 }

 }

 }

 }

 /* rest of the class */

}

The array of event listeners can be defined as an array, with a key as the
event name and its value as a callable. However, our implementation also
supports using array values as another array defining the callable and priority
(that's the second nested foreach loop).

At the beginning of this method, we also call its parent because we want to
allow the default functionality as well.

For demonstration purposes, we're going to extend the MyEventSubscriber
class we defined earlier and implement
the getSubscribedEventsObservables() method, which is going to return
two event listeners:

// MyObservableEventSubscriber.php

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

use Rx\Observable;

require_once __DIR__ . '/MyEventSubscriber.php';

class MyObservableEventSubscriber extends MyEventSubscriber

 implements EventObservableSubscriberInterface {

 public static function getSubscribedEventsObservables() {

 return [

 'my_action' => [

 [

 function(Observable $observable) {

 $observable->subscribe(new DebugSubject());

 }, 10

], [

 function(Observable $observable) {

 $observable

 ->subscribe(new DebugSubject());

 }

]

],

 'other_action' => function(Observable $observable) {

 $observable->subscribe(new DebugSubject());

 }

]

 }

}

We defined three event listeners for two different events, where the first one
for my_action event has priority 10 and the second the default, 0.

Creating the Observable chain for an event
The method getSubject() is the place where Observable chains are being
generated. This method is then called only when dispatching an event:

class ReactiveEventDispatcher extends EventDispatcher {

 /**

 * @param string $eventName

 * @return Subject

 */

 private function getSubject($eventName) {

 if (isset($this->subjects[$eventName])) {

 return $this->subjects[$eventName];

 }

 $subject = new Subject();

 $this->subjects[$eventName] = $subject;

 $tail = $subject->asObservable();

 foreach ($this->getListeners($eventName) as $listener) {

 $newTail = $tail->filter(function (Event $event) {

 return !$event->isPropagationStopped();

 });

 $newTail->subscribe($listener);

 $tail = $newTail;

 }

 return $subject;

 }

 /* rest of the class */

}

If the Subject for this event doesn't exist, we create a new one and then call
getListeners(). This method is defined in the parent EventDispatcher
class and returns a sorted array of listeners (or observers, in our case). Then
we iterate the array and add a filter() operator followed by subscribing the
observer or Subject, depending on whether we used addListener()
or addObservable().

Note

Note that operators (such as filter(), in this example) always return a new
Observable, while calling subscribe() returns a disposable object.

We don't need to create the $subject every time we call this method, because
it doesn't change until we add new listeners, so we can keep a reference to it
in the $subjects array.

Comparing filter() to takeWhile()

In the previous Chapter 3, Writing a Reddit Reader with RxPHP, we
mentioned an operator that might work well instead of filter(). We
used takeWhile(), which also takes a predicate callable as a parameter and
can stop propagating values down the Observable chain.

The important distinction is that the filter() operator decides whether or
not it internally calls onNext() on its associated observer. On the other hand,
takeWhile() decides whether or not it calls onComplete().
Calling onComplete() would lead to invoking disposables, which would
unsubscribe the observers, and this is definitely not what we want. If we did
unsubscribe, we'd have to create the Subject for each event on
every dispatch() call.

Note

In Chapter 8, Multicasting in RxPHP and PHP7 pthreads Extension, we'll
talk more about what unexpected consequences calling onComplete on a
Subject might have.

Dispatching events
Finally, dispatching events is very simple:

class ReactiveEventDispatcher extends EventDispatcher {

 public function dispatch($eventName, Event $event = null) {

 if (null === $event) {

 $event = new Event();

 }

 $subject = $this->getSubject($eventName);

 $subject->onNext($event);

 return $event;

 }

 /* rest of the class */

}

Dispatching an event in our reactive dispatcher means taking the Subject for
this particular event and calling its onNext() method, with the event as an
argument. The event then gets propagated unless its stopPropagation()
method is called, because we check its state before calling every observer
with the filter() operator.

We also return the event from the method, to stay compatible with the default
EventDispatcher implementation.

And that's it. Our ReactiveEventDispatcher is complete and we can run a
few test scenarios.

Practical example of
ReactiveEventDispatcher
We dedicated the first part of this chapter to explaining how the default
EventDispatcher that comes out of the box with the
Symfony EventDispatcher component works, and what use cases we expect
it to deal with.

Now we need to make sure the same applies to ReactiveEventDispatcher as
well.

Working with event listeners

We know that our overridden addListener() method now accepts both
callables and observers, so we can test both use cases in one example:

// reactive_dispatcher_02.php

$disp = new ReactiveEventDispatcher();

$disp->addListener(' my.action ', function(Event $event) {

 echo "Listener #1\n";

});

$disp->addListener(' my.action ', new

CallbackObserver(function($e) {

 echo "Listener #2\n";

}), 1);

$disp->dispatch(' my.action ', new Event());

This example calls the second listener and then the first listener, because the
second one has a higher priority:

$ php reactive_dispatcher_02.php

Listener #2

Listener #1

Now, let's test event subscribers with the same MyEventSubscriber class we
used in the preceding example. The usage and the output are exactly the
same, so we don't need to print the output here again:

// reactive_dispatcher_04.php

$dispatcher = new ReactiveEventDispatcher();

$dispatcher->addSubscriber(new MyEventSubscriber());

$dispatcher->dispatch('my_action', new MyEvent());

An important feature of ReactiveEventDispatcher is the addObservable()
method. We've seen a short snippet of how it can be used when explaining
the method itself, but it's worth showing this in context with addListener()
as well.

A slightly modified example, which dispatches multiple events, uses
Observables and fiddles with conditional stopping event propagation, could
look like the following:

// reactive_dispatcher_05.php

$dispatcher = new ReactiveEventDispatcher();

$dispatcher->addListener('my_action', function(MyEvent $event) {

 echo "Listener #1\n";

});

$dispatcher->addObservable('my_action', function($observable) {

 $observable

 ->map(function(MyEvent $event) {

 $event->inc();

 return $event;

 })

 ->doOnNext(function(MyEvent $event) {

 if ($event->getCounter() % 2 === 0) {

 $event->stopPropagation();

 }

 })

 ->subscribe(new DebugSubject());

}, 1);

foreach (range(0, 5) as $i) {

 $dispatcher->dispatch('my_action', new MyEvent('my-event',

$i));

}

Its output is obvious. When the event's getCounter() method returns a
number divisible by 2, the event is stopped and never reaches the first event
listener added using addListener():

$ php reactive_dispatcher_05.php

23:27:08 [] onNext: my-event (1) (MyEvent)

Listener #1

23:27:08 [] onNext: my-event (2) (MyEvent)

23:27:08 [] onNext: my-event (3) (MyEvent)

Listener #1

23:27:08 [] onNext: my-event (4) (MyEvent)

23:27:08 [] onNext: my-event (5) (MyEvent)

Listener #1

23:27:08 [] onNext: my-event (6) (MyEvent)

Working with event subscribers

Let's also test that the event subscriber MyObservableEventSubscriber we
defined earlier works as expected:

// reactive_dispatcher_06.php

$dispatcher = new ReactiveEventDispatcher();

$dispatcher->addSubscriber(new MyObservableEventSubscriber());

$dispatcher->dispatch('my_action', new MyEvent('my-event'));

Remember that we extended the original MyEventSubscriber and added two
more listeners, so the event dispatcher first adds listeners returned from
getSubscribedEvents(), and then adds those from
getSubscribedEventsObservables():

$ php reactive_dispatcher_06.php

11:14:01 [] onNext: my-event (0) (MyEvent)

Listener [onMyActionAgain]: my-event (1)

Listener [onMyAction]: my-event (2)

11:14:01 [] onNext: my-event (2) (MyEvent)

The listener with the highest priority is called first. In our case, it's the first
Observable listener with priority 10, then onMyActionAgain() is called, with
priority 1, and then the two remaining listeners are called in the order they
were added.

Summary
This chapter has focused mainly on the practical usage of RxPHP in
combination with typical non-reactive code, and presented a different
approach to existing event-based solutions.

Specifically, we stumbled across Error handling in Observable chains with
retry(), RetryWhen(), and catch() operators. We combined Observables
with the concat(), merge(), and concatMap() operator. We used Subjects to
dynamically create Observable chains and manually emit values. You were
also given an introduction to the Symfony EventDispatcher component,
with a series of examples presenting how the default EventDispatcher class
that comes out of the box can be used. We extended and partially rewrote the
EventDispatcher class and created ReactiveEventDispatcher, which adds
support for Observables. And lastly, we reused examples for
EventDispatcher with ReactiveEventDispatcher to demonstrate that our
implementation can work as a drop-in replacement.

The Symfony EventDispatcher component serves as an easily
implementable solution to a common problem in larger applications, which is
communication between object and extendability. We
wrote ReactiveEventDispatcher to add capabilities to also use observers as
event listeners.

In the next chapter, we'll learn how to write unit tests to test Observables,
operators, and observers. We'll also have a better look at Schedulers and see
how important are they in testing RxPHP code.

Chapter 5. Testing RxPHP Code
In this chapter, we're going to start testing code based on RxPHP. So far,
we've been testing code by just running it and watching for the expected
output in console. Of course, this isn't a very systematic approach, so it's time
to start testing our code in an automatic way.

More precisely, in this chapter we will do the following:

Introduce the doOn*() operators
Start using the PHPUnit library for unit testing code
Talk about testing asynchronous code in general and try some common
pitfalls ourselves
Explore classes that come with RxPHP intended for testing and see how
to use them separately, and how they fit into the great scheme of things
For demonstration purposes, create a SumObservable class that
calculates the sum of all integers going through, and test it using RxPHP
testing tools
Write a simplified ForkJoinObservable class and test it
Stress how important it is to be aware of timing when testing
Observables and operators

This chapter is going to be very code-intensive, although most of these
examples are simple and aim to put things from previous chapters to the
perspective of unit testing. Previous experience with unit testing with
PHPUnit is helpful, but not required.

Apart from writing unit tests, there's a very common way of debugging
Observable chains with doOn*() operators.

The doOn*() operators
In the previous chapter, we've used the map() operator a couple of times to
just print to the console what's happening inside our Observable chains.
However, this isn't very convenient. The map() operator always needs to
return a value that is passed further down the chain, and it can catch
only onNext signals.

That's why RxPHP has a couple of operators with the common prefix doOn*:

doOnNext(), doOnError(), doOnCompleted(): Each of these operators
takes a callable as a parameter that is executed when they receive their
respective signal
doOnEach(): This operator takes an instance of ObserverInterface as
a parameter and executes its handlers for each signal

So these operators are very similar to the methods subscribeCallback()
and subscribe(). The biggest advantage is in the way doOn* operators work
internally. They never modify the value going through and just execute our
callables, which is ideal for quickly debugging Observable chains or to
perform side-effects without creating subscriptions (this includes everything
related to subscribing to Observables as we talked about in Chapter
3, Writing a Reddit Reader with RxPHP).

We can see this with a very simple example:

// do_01.php

use Rx\Observable;

use Rx\ObserverInterface;

Observable::create(function(ObserverInterface $obs) {

 $obs->onNext(1);

 $obs->onNext(2);

 $obs->onError(new \Exception("it's broken"));

 })

 ->doOnError(function(\Exception $value) {

 echo $value->getMessage() . "\n";

 })

 ->subscribeCallback(function($value) {

 echo "$value\n";

 }, function() {});

We have a single subscriber that handles onNext and onError signals. Note
that the onError handler is empty and it's the doOnError() operator that
prints the exception messages. Console output for this example is as follows:

$ php do_01.php

1

2

doOnError: it's broken

Using the remaining doOn*() operators is exactly the same. We're obviously
not going to use these operators to test RxPHP code, but these are often the
easiest way to see what's emitted by our Observables.

Note

These operators have been simplified in RxPHP v2 and have the same
signature as the subscribe() method in RxPHP v2, which is just do()
instead of all its variants. Its functionality remains unchanged.

Installing the PHPUnit package
Since we're installing all dependencies throughout this book from the
composer, we will do the same for PHPUnit:

composer require phpunit/phpunit

This also creates a symlink into vendor/bin/phpunit, which we'll use to run
our unit tests from the console.

PHPUnit supports multiple ways to install, including PHAR (PHP archive)
format and installing it globally using the following:

composer global require phpunit/phpunit

Note

If you run into trouble installing PHPUnit, head over to the installation
instructions at https://phpunit.de/manual/5.6/en/installation.html .

However, unless you have a good reason to use one global instance of
PHPUnit, it's better to install it per project. This way we can avoid dealing
with issues involving unit testing code written for different PHPUnit
versions.

https://phpunit.de/manual/5.6/en/installation.html

Basics of writing tests using
PHPUnit
We're not going to go into very much detail about how to use PHPUnit, and
instead leave it to its in-depth documentation (
https://phpunit.de/manual/5.6/en/index.html). For the purpose of this chapter,
we should, however, have a quick look at some of the basics we're going to
use for the purposes of testing RxPHP code.

There are some basic rules we should follow:

All tests for a single class, MyClass, go into a class called MyClassTest,
which should inherit from PHPUnit\Framework\TestCase.
Each test scenario is represented by a function prefixed with test or
annotated with @test annotation. This way it can be auto-discovered by
PHPUnit.
Each test function consists of one or more assertions using assert*
methods (more on them later). If any one of them fails, the whole test
scenario (one test function) is marked as failed. All assertions are
inherited from PHPUnit\Framework\TestCase.
We can specify dependencies between test scenarios using @depends
testname annotation to change the order in which tests are executed.

So, let's write a minimalistic test class that demonstrates the preceding points.
We can call this test class DemoTest, and it can make just a few assertions:

// phpunit_01.php

use PHPUnit\Framework\TestCase;

class DemoTest extends TestCase {

 public function testFirstTest() {

 $expectedVar = 5;

 $this->assertTrue(5 == $expectedVar);

 $this->assertEquals(5, $expectedVar);

 $expectedArray = [1, 2, 3];

 $this->assertEquals([1, 2, 3], $expectedArray);

https://phpunit.de/manual/5.6/en/index.html

 $this->assertContains(2, $expectedArray);

 }

}

We used three different types of assertion. In general, all assertions compare
an expected value and an actual value returned from a tested function. The
following three assertions work in this way too:

assertTrue($condition): The tested condition needs to be true.
assertEquals($expected, $actual): Checks that $expected
and $actual values are equal. This single assertion handles multiple
types of data separately, even those that aren't comparable with the ==
operator. Apart from comparing basic types, such as strings, arrays,
Booleans, and numbers, it can also compare DOMDocument instances, or
any objects to match their attributes.
assertContains($needle, $haystack): Typically, checks that an array
(haystack) contains a value, but can also check that a string contains
another string.

PHPUnit contains dozens of different assertion methods, and all of them
work on the same principle. A full list is available in the documentation (
https://phpunit.de/manual/current/en/appendixes.assertions.html), and we
can, of course, write our own. We're going to use a very limited number of
assertions that are relevant for us, so we're good to go with these basic ones.

Then, we can execute all test scenarios in the class from the console, using
the PHPUnit command-line executable. It's located in vendor/bin, and since
we're going to use it a lot we'll make a symlink to the project root. We'll do
the same for the autoload.php script located in the vendor directory that we
need as well:

$ ln -s vendor/bin/phpunit ./phpunit

$ ln -s vendor/autoload.php ./autoload.php

Now we can run our test class with the following command:

$./phpunit --bootstrap autoload.php phpunit_01.php

PHPUnit 5.6.2 by Sebastian Bergmann and contributors.

. 1 / 1 (100%)

https://phpunit.de/manual/current/en/appendixes.assertions.html

Time: 72 ms, Memory: 4.00MB

OK (1 test, 4 assertions)

Note

Some empty lines from the CLI output are purposely removed to keep them
reasonably short.

We used two CLI parameters here:

--bootstrap: Since we expect tests to work with various classes and
functions from our project, we need to tell PHPUnit where it can find
them. This parameter lets you specify a custom class loader (basically a
PHP SPL autoloader). Fortunately, Composer already does everything
for us, and generates autoload.php from our composer.json file. If we
don't use the --bootstrap parameter, PHPUnit will throw an error
because it will be unable to find PHPUnit\Framework\TestCase.
phpunit_01.php: This is the file containing the test we want to run.
Note that we could also use a directory path to test all the files in that
directory, or just a dot (.), to test all the files in the current directory.

Note

PHPUnit allows the creation of a custom XML file with its configuration, so
we don't have to include the --bootstrap parameter every time. To keep
things simple, we're not using it. For more information, see the
documentation at
https://phpunit.de/manual/current/en/appendixes.configuration.html .

The console output summarizes everything we need to know about the tests
processed. We can see it ran one test case with four assertions. The line with
a single dot (.) followed by 1 / 1 (100%) means we executed a single test
case and it succeeded. This isn't very descriptive, so we can use another
argument, --testdox, to make it more human-readable:

$./phpunit --testdox --bootstrap autoload.php phpunit_01.php

PHPUnit 5.6.2 by Sebastian Bergmann and contributors.

Demo

 [x] First test

https://phpunit.de/manual/current/en/appendixes.configuration.html

Now, instead of the dot (.), PHPUnit converted the class and function names
into strings, and marked those that passed. This is definitely more
understandable; however, it doesn't show error messages on the failed test, so
we don't know why it failed.

We'll use both formats in this chapter depending on the situation. Usually,
when we expect a test to pass, we'll use the second, more readable, format.
When we expect the test to fail, we'll use the first format to see where it failed
and why (if it failed).

For demonstration purposes, we'll also add a test that fails and another test
that depends on the first test:

class DemoTest extends TestCase {

 // ...

 public function testFails() {

 $this->assertEquals(5, 6);

 $this->assertContains(2, [1, 3, 4]);

 }

 /**

 * @depends testFails

 */

 public function testDepends() {

 $this->assertTrue(true);

 }

}

The first test case fails because it asserts that 5 == 6. The second test case is
skipped because the test it depends on failed. The failed test is then properly
marked as failed, while the skipped test is omitted:

$./phpunit --testdox --bootstrap autoload.php phpunit_01.php

PHPUnit 5.6.2 by Sebastian Bergmann and contributors.

Demo

 [x] First test

 [] Fails

This is all we need to know for now. Before jumping into testing RxPHP
code, we should quickly talk about testing asynchronous code in general and
one common pitfall we need to be aware of.

Testing asynchronous code
There's one important caveat we need to know about when testing
asynchronous code, and since everything we do with RxPHP is asynchronous
it's very relevant to us. Let's consider the following function
asyncPowIterator(), which we're about to test:

// phpunit_async_01.php

use PHPUnit\Framework\TestCase;

function asyncPowIterator($num, callable $callback) {

 foreach (range(1, $num - 1) as $i) { // intentional

 $callback($i, pow($i, 2));

 }

}

class AsyncDemoTest extends TestCase {

 public function testBrokenAsync() {

 $callback = function($i, $pow) use (&$count) {

 $this->assertEquals(pow($i, 2), $pow);

 };

 }

}

We have a function, asyncPowIterator(), that calls a callable on each
number in the range 1 to 5. Notice that we made an intentional bug and
instead of iterating the range 1 to 5, we'll just iterate 1 to 4.

In order to test that this method produces correct values, we placed the
assertion right into the callable. So, let's run the test and see what happens:

$./phpunit --testdox --bootstrap autoload.php

phpunit_async_01.php

PHPUnit 5.6.2 by Sebastian Bergmann and contributors.

AsyncDemo

 [x] Broken async

Well, the test passed, even though there's a bug that we know about.

The function in fact generates correct results, it's just not called as many
times as we expect. This means that to test this function properly, we need to

count the calls of the callable as well, and then compare it to the expected
value:

class AsyncDemoTest extends TestCase {

 public function testBrokenAsync() {

 $count = 0;

 $callback = function($i, $pow) use (&$count) {

 $this->assertEquals(pow($i, 2), $pow);

 $count++;

 };

 asyncPowIterator(5, $callback);

 $this->assertEquals(5, $count);

 }

}

Now, we're incrementing the $count variable every time we go through the
callable and, if we run the test again, we'll see it fails as it's supposed to:

$./phpunit --bootstrap autoload.php phpunit_async_01.php

PHPUnit 5.6.2 by Sebastian Bergmann and contributors.

F 1 / 1 (100%)

Time: 57 ms, Memory: 4.00MB

There was 1 failure:

1) AsyncDemoTest::testBrokenAsync

Failed asserting that 4 matches expected 5.

/path/Chapter 05/phpunit_async_01.php:22

FAILURES!

Tests: 1, Assertions: 5, Failures: 1.

Now it fails as we want and we know that something's wrong.

This is an important paradigm. When testing asynchronous code, we can't just
test that it returns correct results; we also need to be sure it gets called at all.

What we already know about unit testing could be enough to start testing our
Observables and operators. RxPHP comes with a couple of classes intended
for testing RxPHP code that can make our lives easier. All of these are used
internally by RxPHP to test itself, so it's worth spending a little time learning
about them, and start using them as well when testing our own code.

Testing RxPHP code
Since Chapter 2, Reactive Programming with RxPHP, where we introduced
Schedulers, we've been using them via ImmediateScheduler
and EventLoopScheduler. Internally, EventLoopScheduler extends another
Scheduler, called VirtualTimeScheduler, which is also used internally
by TestScheduler, which we'll use for testing in a moment. But before we do
that, let's see what's so interesting about VirtualTimeScheduler.

Introducing VirtualTimeScheduler
With ImmediateScheduler, everything is executed immediately.
The VirtualTimeScheduler keeps a priority queue of actions to be executed
and gives us control over the order they're called.

In this example, we'll make an instance of VirtualTimeScheduler and stack
a couple of actions that will be executed with different delays using
the schedule($actionCallable, $delay) method:

// virtual_time_scheduler_01.php

use Rx\Scheduler\VirtualTimeScheduler;

$scheduler = new VirtualTimeScheduler(0, function($a, $b) {

 return $a - $b;

});

$scheduler->schedule(function() {

 print("1\n");

}, 300);

$scheduler->schedule(function() {

 print("2\n");

}, 0);

$scheduler->schedule(function() {

 print("3\n");

}, 150);

$scheduler->start();

When we instantiate the VirtualTimeScheduler class, we also need to pass a
starting time and a typical comparer function that decides which action is
called first. Then, to actually start executing all the actions in the correct
order, we need to call the start() method manually.

The schedule() method also takes as its last argument a delay from the
starting time when it'll be executed. This means we can define actions in a
different order than they're supposed to be executed.

This example will print numbers in the following order:

$ php virtual_time_scheduler_01.php

2

3

1

This is actually what EventLoopScheduler does when we use it with an
Observable that allows delayed execution, such as IntervalObservable.
Let's look again at the very basic example with the interval() operator in
RxPHP 1.x:

$loop = new React\EventLoop\StreamSelectLoop();

$scheduler = new Rx\Scheduler\EventLoopScheduler($loop);

Rx\Observable::interval(1000, $scheduler)

 ->subscribe(...);

$loop->run();

The EventLoopScheduler class is based on the same principle
as VirtualTimeScheduler (it also inherits VirtualTimeScheduler). The
primary difference is that EventLoopScheduler uses a loop to reschedule
action calls over and over again in the specified interval. In this example, by
"action" we mean an onNext() call from IntervalObservable.

The default delay for schedule() is 0, so we can also
use VirtualTimeScheduler instead of ImmediateScheduler. Consider the
following example:

// virtual_time_scheduler_02.php

use Rx\Scheduler\VirtualTimeScheduler;

use Rx\Observable;

use Rx\Observer\CallbackObserver;

$scheduler = new VirtualTimeScheduler(0, function($a, $b) {

 return $a - $b;

});

$observer = new CallbackObserver(function($val) {

 print("$val\n");

});

$observable = Observable::fromArray([1,2,3,4]);

$observable->subscribe($observer, $scheduler);

$scheduler->start();

As expected, this prints all items in the array in the order they're specified:

$ php virtual_time_scheduler_02.php

1

2

3

4

Now it should be obvious why we always check in all our methods whether
there's a Scheduler passed, and if there isn't, we use the simplest
ImmediateScheduler. This allows us to easily switch to any other Scheduler
if we have a reason to. Well, one good reason is unit testing, of course.

The VirtualTimeScheduler itself isn't used when testing RxPHP code, but
it's wrapped with another Scheduler called TestScheduler that uses its
principles under the hood and lets us schedule even more than just actions.
Since TestScheduler uses a few other classes related to testing internally,
we'll first have a look at them and then go back to TestScheduler.

Note

As its name suggests the VirtualTimeScheduler doesn't work with real time.
The delays we set when calling the schedule() method are only used to
execute actions in the correct order.

HotObservable and ColdObservable
We know what hot and cold Observables are from Chapter 02 , Reactive
Programming with RxPHP. These have their universal variants
as HotObservable and ColdObservable classes. Note that these are intended
only for testing and not for production usage.

We'll first have a look at how HotObservable can be used, and then talk
about each class used in this example separately:

// hot_observable_01.php

use Rx\Scheduler\VirtualTimeScheduler;

use Rx\Testing\HotObservable;

use Rx\Testing\Recorded;

use Rx\Notification\OnNextNotification;

$scheduler = new VirtualTimeScheduler(0, function($a, $b) {

 return $a - $b;

});

$observable = new HotObservable($scheduler, [

 new Recorded(100, new OnNextNotification(3)),

 new Recorded(150, new OnNextNotification(1)),

 new Recorded(80, new OnNextNotification(2)),

]);

$observable->subscribeCallback(function($val) {

 print("$val\n");

});

$scheduler->start();

We used two new classes, Recorded and OnNextNotification, which we
haven't met yet, so let's talk about them:

HotObservable/ColdObservable: This class creates a hot or cold
Observable, respectively. It takes as its argument a Scheduler and an
array of actions that need to be scheduled for execution on the Scheduler
we provide.
Recorded: This class represents a single message (instead of a callable
we used in the previous examples) scheduled for delayed execution.
This class has a very important method, equal(), to compare two
instances for equal value, time of invocation, and message type.

OnNextNotification: The action itself is represented by an instance of
this class. It takes only one parameter representing its value, and its only
purpose is to call onNext() on an observer when invoked. There are
also OnErrorNotification and OnCompletedNotification classes,
calling onError and OnComplete methods, respectively.

When we run this example, we get the following result:

$ php hot_observable_01.php

2

3

1

The difference between HotObservable and ColdObservable is when they
schedule their actions. The HotObservable class schedules everything right
in its constructor, while ColdObservable does everything on subscription.

MockObserver
Just like when we talked about testing asynchronous code and that we need to
be able to tell when callables weren't called at all, we need the same thing in
RxPHP when testing Observables. RxPHP comes with class MockObserver,
which records all the messages it receives (including the exact time for each
record from the Scheduler), so we can later compare them with expected
messages in the correct order.

Consider the following code printing all messages from MockObserver:

// mock_observer_01.php

use Rx\Testing\MockObserver;

use Rx\Scheduler\VirtualTimeScheduler;

use Rx\Testing\HotObservable;

use Rx\Testing\Recorded;

use Rx\Notification\OnNextNotification;

use Rx\Notification\OnCompletedNotification;

$scheduler = new VirtualTimeScheduler(0, function($a, $b) {

 return $a - $b;

});

$observer = new MockObserver($scheduler);

(new HotObservable($scheduler, [

 new Recorded(100, new OnNextNotification(3)),

 new Recorded(150, new OnNextNotification(1)),

 new Recorded(80, new OnNextNotification(2)),

 new Recorded(140, new OnCompletedNotification()),

]))->subscribe($observer);

$scheduler->start();

foreach ($observer->getMessages() as $message) {

 printf("%s: %s\n", $message->getTime(), $message-

>getValue());

}

Notice that we've also included OnCompletedNotification, which is called
before the last value:

$ php mock_observer_01.php

80: OnNext(2)

100: OnNext(3)

140: OnCompleted()

150: OnNext(1)

We can see that the value in each message is wrapped with the type of
notification we used. Also, the last onNext call is recorded as well, even
though it was emitted after onComplete. This is the correct behavior
of MockObserver, because its only goal is to record messages and not to
perform any logic.

TestScheduler
Now let's come back to the TestScheduler class we mentioned when talking
about VirtualTimeScheduler. This class inherits VirtualTimeScheduler
and provides a couple of methods related to scheduling events.

We'll start with an example again and see what TestScheduler does for us:

$scheduler = new TestScheduler();

$observer = $scheduler

 ->startWithCreate(function() use ($scheduler) {

 return new HotObservable($scheduler, [

 new Recorded(200, new OnNextNotification(3)),

 new Recorded(250, new OnNextNotification(1)),

 new Recorded(180, new OnNextNotification(2)),

 new Recorded(240, new OnCompletedNotification()),

 new Recorded(1200, new OnNextNotification(4)),

]);

});

$expected = [

 new Recorded(200, new OnNextNotification(3)),

 new Recorded(240, new OnCompletedNotification()),

 new Recorded(250, new OnNextNotification(1)),

];

$actual = $observer->getMessages();

printf("Count match: %d\n", count($actual) == count($expected));

foreach ($actual as $i => $message) {

 printf("%s: %d\n", $message->getTime(),

 $message->equals($expected[$i]));

}

We created five messages and we're expecting to receive only three. Also,
this time, we're using the method equals() on instances of Recorded to
compare them to each other. This will make sure we're receiving the correct
number of messages in the correct order.

Let's run this example and check that we receive messages as we expect in
the $expected array, and then talk about what happens inside and why:

$ php mock_observer_02.php

Count match: 1

200: 1

240: 1

250: 1

So, where did the other two messages disappear to? The TestScheduler class
has two very important methods for scheduling actions, which we're going to
use when testing RxPHP code:

startWithTiming($create, $createTime, $subscribeTime,

$disposeTime): This method schedules three actions. These actions are:
creating an instance of the source Observable, subscribing to the
Observable and finally disposing a disposable returned from
the subscribe() call. Each action is scheduled for a specific time by
one of the arguments. Since creating an instance of Observable is one of
the scheduled actions, it needs to be passed as a callable that returns the
Observable, and not directly as an argument.
startWithCreate($create): This method calls the startWithTiming()
method with default values. It's equal to
calling startWithTiming($create, 100, 200, 1000). The only
argument is a callable that returns the source Observable.

Both these methods return an instance of MockObserver, which is also used to
subscribe to the source Observable, so we don't need to create it ourselves.

Now it should be obvious why we received just three messages when we
actually scheduled five. The message delayed by 180 happens before we
subscribe to the source Observable, and the last message, with a delay of
1200, happens after we've already called dispose(), which
unsubscribed TestObserver from the source Observable.

Comparing actual and expected messages with a foreach loop is, of course,
possible, but it would be very tedious to do this in every single test we write.
That's why RxPHP comes with Rx\Functional\FunctionalTestCase class,
which we can use instead of PHPUnit\Framework\TestCase and which adds
assertion methods specific to RxPHP code, most notably

the assertMessages() method, which compares arrays of messages, just as
we did in this example.

Testing SumOperator
All these classes are used by RxPHP to test its own code. Now we'll use them
to test our own Observables and operators as well.

For testing purposes, we're going to write a simple operator that calculates the
sum of all the integers it receives. When an onComplete arrives, it emits a
single onNext with the sum of all numbers. It also emits onError when a non-
integer value arrives:

// SumOperator.php

class SumOperator implements OperatorInterface {

 private $sum = 0;

 function __invoke($observable, $observer, $scheduler=null) {

 $observable->subscribe(new CallbackObserver(

 function($value) use ($observer) {

 if (is_int($value)) {

 $this->sum += $value;

 } else {

 $observer->onError(new Exception());

 }

 },

 [$observer, 'onError'],

 function() use ($observer) {

 $observer->onNext($this->sum);

 $observer->onCompleted();

 }

));

 }

}

This operator is very straightforward, and since we already know all the
utilities we need to properly test it, we can jump right into unit testing with
PHPUnit.

Note

In fact, RxPHP already has a sum() operator, which is internally implemented
as a reduce() operator that just adds values.

Instead of PHPUnit\Framework\TestCase, we'll
use Rx\Functional\FunctionalTestCase, which creates TestScheduler
internally and automatically passes it to new hot/cold Observables, so we
don't need to worry about Schedulers at all.

RxPHP also contains a few helper functions to simplify creating Recorded
objects. Instead of calling new Recorded(200, new
OnNextNotification(3)), we can use onNext(200, 3) function defined in
the rxphp/test/helper-functions.php file.

In order to use these functions, and also the FunctionalTestCase class, we
need to tell the autoloader where to find them by updating
our composer.json:

{

 "name": "rxphp_unittesting_demo",

 ...

 "require": {

 "reactivex/rxphp": "^1.5",

 "phpunit/phpunit": "^5.6",

 ...

 },

 "autoload": {

 "psr-4": {

 "Rx": "vendor/reactivex/rxphp/test/Rx"

 },

 "files": [

 "vendor/reactivex/rxphp/test/helper-functions.php"

]

 }

}

After updating composer.json, we need to regenerate the autoload.php
script as well:

$ composer update

Now we can use onNext(), onComplete(), onError(), and also
the FunctionalTestCase class (don't interchange the onNext() function
from helper-functions.php with the onNext() method in observers; these

are two separate things). Thanks to all this, the test class will then be pretty
short:

// SumOperatorTest.php

use Rx\Functional\FunctionalTestCase;

class SumOperatorTest extends FunctionalTestCase {

 public function testSumSuccess() {

 $observer = $this->scheduler->startWithCreate(function () {

 return $this->createHotObservable([

 onNext(150, 3),

 onNext(210, 2),

 onNext(450, 7),

 onCompleted(460),

 onNext(500, 4),

])->lift(function() {

 return new SumOperator();

 });

 });

 $this->assertMessages([

 onNext(460, 9),

 onCompleted(460)

], $observer->getMessages());

 }

}

This test schedules a couple of messages and completes the Observable at
time 460, which causes the SumOperator to emit its accumulated value, and
also to complete right after that.

The callable for the startWithCreate() method creates a HotObservable
class and connects it with our SumOperator using the lift() method we
talked about extensively and used in Chapter 03 , Writing a Reddit Reader
with RxPHP. At the end, we used assertMessages() to compare messages
received by MockObserver with expected messages, just as we did in the
previous example. Using assertMessages() from FunctionalTestCase is
just more comfortable.

We can run the test to see that it really passes successfully:

$./phpunit --bootstrap ./vendor/autoload.php SumOperatorTest.php

PHPUnit 5.6.2 by Sebastian Bergmann and contributors.

. 1 / 1 (100%)

Time: 84 ms, Memory: 4.00MB

OK (1 test, 1 assertion)

Note that even when assertMessages() has to compare two messages and
make sure both arrays are the same size, it counts as a single assertion.

Now let's also test a situation where we pass an invalid value (a string in this
case) that causes an onError message:

class SumOperatorTest extends FunctionalTestCase {

 // ...

 public function testSumFails() {

 $observer = $this->scheduler->startWithCreate(function () {

 return $this->createHotObservable([

 onNext(150, 3),

 onNext(250, 'abc'),

 onNext(300, 2),

 onCompleted(460)

])->lift(function() {

 return new SumOperator();

 });

 });

 $this->assertMessages([

 onError(250, new Exception()),

], $observer->getMessages());

 }

}

We expect to receive an onError message at 250 and that's all. Even though
there are two more messages scheduled, they won't arrive
at TestObservable.

Of course, these two tests pass as expected:

$./phpunit --testdox --bootstrap autoload.php SumOperatorTest

PHPUnit 5.6.2 by Sebastian Bergmann and contributors.

SumOperator

 [x] Sum success

 [x] Sum fails

Testing ForkJoinObservable
Now we can have a look at a slightly more complicated example. In RxPHP,
there's an interesting operator called forkJoin(). This operator takes as its
parameter an array of Observables, collects the last value emitted for each of
them, and when they all complete, emits a single array with the last values for
each Observable.

This will make better sense when we look at the following marble diagram
for forkJoin() operator in RxJS:

Marble diagram representing the forkJoin() operator in RxJS
(http://reactivex.io/documentation/operators/zip.html)

We're going to implement a simplified version of the forkJoin() operator as
an Observable. To make it extra clear what it does, we'll start with an
example:

// fork_join_test_01.php

use Rx\Observable;

(new ForkJoinObservable([

 Observable::fromArray([1, 2, 3, 4]),

 Observable::fromArray([7, 6, 5]),

 Observable::fromArray(['a', 'b', 'c']),

]))->subscribeCallback(function($values) {

 print_r($values);

});

This will print the last value from each source Observable:

$ php fork_join_test_01.php

Array

(

 [0] => 4

 [1] => 5

 [2] => c

)

Our implementation will subscribe to each source Observable and keep the
latest value emitted for each of them. Then, when all of them complete, it
emits one onNext() and one onComplete:

// ForkJoinObservable.php

class ForkJoinObservable extends Observable {

 private $observables;

 private $lastValues = [];

 private $completed = [];

 public function __construct($observables) {

 $this->sources = $observables;

 }

 public function subscribe($observer, $sched = null) {

 $disp = new CompositeDisposable();

 if (null == $sched) {

 $sched = new ImmediateScheduler();

 }

 foreach ($this->observables as $i => $obs) {

 $inDisp = $obs->subscribeCallback(function($v) use ($i) {

 $this->lastValues[$i] = $v;

 }, function($e) use ($observer) {

 $observer->onError($e);

 }, function() use ($i, $observer) {

 $this->completed[$i] = true;

 $completed = count($this->completed);

 if ($completed == count($this->observables)) {

 $observer->onNext($this->lastValues);

 $observer->onCompleted();

 }

 }

);

 $disp->add($inDisp);

 }

 return $disp;

 }

}

There are just a couple of nested anonymous functions. Note that we also
need to store all disposables in CompositeDisposable to be able to properly
dispose all of them.

Testing this class is very similar to what we did before. Pay special attention
to the delays we use for each of the message calls:

// ForkJoinObservableTest.php

class ForkJoinObservableTest extends FunctionalTestCase {

 public function testJoinObservables() {

 $observer = $this->scheduler->startWithCreate(function () {

 return new ForkJoinObservable([

 $this->createHotObservable([

 onNext(200, 1),

 onNext(300, 2),

 onNext(400, 3),

 onCompleted(500),

 onNext(600, 4),

]),

 $this->createHotObservable([

 onNext(200, 8),

 onNext(300, 7),

 onNext(400, 6),

 onCompleted(800),

])

]);

 });

 $this->assertMessages([

 onNext(800, [3, 6]),

 onCompleted(800)

], $observer->getMessages());

 }

}

We expect to receive onNext() with the last values for each source
Observable at 800, because this is the time when the second Observable
completes. Also, even though the first Observable emitted one more value
after its onComplete call, this will be ignored because it has already
completed.

Then, if we run the test case, it will pass as expected:

$./phpunit --testdox --bootstrap autoload.php

 ForkJoinObservableTest

PHPUnit 5.6.2 by Sebastian Bergmann and contributors.

ForkJoinObservable

 [x] Join observables

The most important thing we should keep in mind when testing RxPHP code
is that time of invocation matters.

We could, of course, just test that our Observables and operators produce the
correct values, but this could leave some bugs unnoticed and hard to find. To
take a specific example, a bug could cause an Observable to pass along
values even after it was supposed to complete, or to fail on an error.

Another interesting scenario we can test is when one of the Observables
never completes. In this case ForkJoinObservable won't emit any value and
not even the onComplete signal:

public function testJoinObservablesNeverCompletes() {

 $observer = $this->scheduler->startWithCreate(function () {

 return new ForkJoinObservable([

 $this->createHotObservable([

 onNext(200, 1),

 onNext(300, 2),

 onCompleted(500),

]),

 $this->createHotObservable([

 onNext(200, 8),

 onNext(300, 7),

])

]);

 });

 $this->assertMessages([], $observer->getMessages());

}

If we reran the ForkJoinObservableTest class, we'd see that this test passes
as well.

Note

The real implementation of ForkJoinObservable is in RxPHP available since
version 1.5 and is slightly more complicated. We'll come back to it in Chapter
10, Using Advanced Operators and Techniques in RxPHP. In Appendix,
Reusing RxPHP Techniques in RxJS, we'll learn about the new way of testing
Rx code called "marble tests" implemented in RxPHP 2 and RxJS 5.

Summary
This chapter covered unit testing code written using PHPUnit with utilities
provided by the RxPHP package.

Most importantly, we went through the doOn*() operators and the basics of
unit testing with PHPUnit, and the problems we need to be aware of when
unit testing asynchronous code. Next, we went in-depth into which classes
aimed at unit testing are provided by RxPHP, how to use each of them, and
which problems they solve. In particular, these were
the VirtualTimeScheduler, HotObservable,
ColdObservable, TestScheduler, and FunctionalTestCase classes. In
addition to this, we wrote example SumOperator and ForkJoinObservable
classes to demonstrate how important it is to test that messages are emitted
and received at the correct times.

In the following chapter, we'll have a deeper look at event loops in PHP and
we'll introduce a more advanced concept of higher-order Observables in
RxPHP.

Chapter 6. PHP Streams API and
Higher-Order Observables
In this chapter, we'll introduce a lot of new features that we need for the next
chapter. Almost everything covered in this chapter is related to PHP Streams
API, Promises and event loops (reactphp/event-loop project in our case).
This also includes a couple of more advanced RxPHP operators working with
so-called higher-order Observables.

In particular, in this chapter, we'll do the following:

Quickly look at using Promises in PHP with the reactphp/promise
library
Introduce PHP Streams API and, with examples, see what benefits it
brings with minimal or no effort
Examine the internals of StreamSelectLoop class, this time in the
context of PHP Streams API
See what caveats we need to be aware of when working with non-
blocking code in event loops
Talk about higher-order Observables
Introduce four new and more advanced
operators, concatAll(), mergeAll(), combineLatest()
and switchMap(), which are intended to work with higher-order
Observables

This chapter is going to introduce a lot of new things we haven't encountered
yet. However, all of them have their benefits in practice, as we'll see in the
next chapter, where we'll write an application that spawns multiple
subprocesses on the go. Each subprocess will be a self-sufficient WebSocket
server itself, and we'll use knowledge gained in this chapter to communicate
with them and to collect information from them.

Using Promises in PHP
While using Reactive Extensions, we think of data as continuous streams that
emit data over time. A similar, and probably more familiar, concept is
Promises, which represent a single value in the future.

You've probably met Promises in libraries such as jQuery, where it's
commonly used to handle responses from an AJAX request. There are
multiple implementations in PHP, but the principle is always the same. We're
going to use a library called reactphp/promise (
https://github.com/reactphp/promise), which follows Promises/A proposal (
http://wiki.commonjs.org/wiki/Promises/A) and adds some extra
functionality as well. Since we're going to use this library for this and the
next chapter, we will have a look at how to use it.

Install react/promise package via composer:

$ composer require react/promiseWe

We will use two basic classes:

Promise: This class represents a result of a deferred computation that
will be available in the future.
Deferred: This class represents an action that's pending. It returns a
single instance of Promise, which is resolved or rejected. Usually, by
resolving a Promise, we understand that the action ended successfully,
while rejection means it failed.

Each Promise is going to be resolved or rejected, and we can handle its
results via multiple methods (we can call them operators as well, since they
serve a similar purpose, like in Rx). Each of these methods returns a new
Promise, so we'll be able to chain them in a very similar way to how we do it
in Rx:

then(): This method takes two callbacks as arguments. The first one is
called only when the Promise is resolved, while the second one is called
only when it's rejected. Each callback can return a modified value,

https://github.com/reactphp/promise
http://wiki.commonjs.org/wiki/Promises/A

which is passed to the next operator.
done(): Similarly to then(), it takes two callbacks as arguments.
However, this method returns null, so it doesn't allow chaining. It's
intended only to consume the result and prevents you from modifying it
any further.
otherwise(): This is a handler when the Promise is rejected or when the
preceding then() method throws an exception.
always(): This is the cleanup method called when the Promise is either
resolved or rejected.

Using the then() and done() methods
We can demonstrate how to use a Promise and Deferred classes with
the then() and done() methods in the following example:

// deferred_01.php

use React\Promise\Deferred;

$deferred = new Deferred();

$deferred->promise()

 ->then(function($val) {

 echo "Then #1: $val\n";

 return $val + 1;

 })

 ->then(function($val) {

 echo "Then #2: $val\n";

 return $val + 1;

 })

 ->done(function($val) {

 echo "Done: $val\n";

 });

$deferred->resolve(42);

The promise() method returns an instance of the Promise class, which is
then chained with two then() and one done() calls. We've mentioned that
a Promise class represents a single value in the future. For this reason,
calling promise() method multiple times always returns the same Promise
object.

In the first then() call, we'll print the value and return $val + 1. This
modified value will be passed to the consecutive then() call, which again
updates the value and passes it to done(). The done() method returns null,
so it can't be chained with any more operators.

The output is then as follows:

$ php deferred_01.php

Then #1: 42

Then #2: 43

Done: 44

Notice that it's the instance of the Deferred class that is responsible for
resolving or rejecting the Promise class because it represents the
asynchronous action. The Promise class, on the other hand, represents just
the result of the Deferred class.

Using the otherwise() and always() methods
Similarly to using then() and done(), we'll handle exceptions
with otherwise(), and we'll also append always(), which will be called
regardless of the Promise class being resolved or rejected:

// deferred_02.php

$deferred = new Deferred();

$deferred->promise()

 ->then(function($val) {

 echo "Then: $val\n";

 throw new \Exception('This is an exception');

 })

 ->otherwise(function($reason) {

 echo 'Error: '. $reason->getMessage() . "\n";

 })

 ->always(function() {

 echo "Do cleanup\n";

 });

$deferred->resolve(42);

Now, the callable for then() throws an exception, which is caught by the
following otherwise() method. This chain of Promises is always finished by
an always() call, even when we threw an exception in then().

If we run this example, we'll receive the following output:

$ php deferred_02.php

Then: 42

Error: This is an exception

Do cleanup

The otherwise() method is, in fact, just a shortcut for then(null,
$onRejected), so we could write it as a single call. However, this notation is
split into two separate method calls, making it easier to understand. We can
also test a scenario where we reject the Promise class instead of resolving it:

$deferred->reject(new \Exception('This is an exception'));

This skips the then() call and triggers only the otherwise() callable:

$ php deferred_02.php

Error: This is an exception

Do cleanup

Notice that the always() method was called in both situations. Also, note that
the otherwise() method allows creating multiple handlers for different
exception classes. If we don't specify the class type in the callable definition,
it'll be triggered on any exception.

PHP Streams API
If we want to work with sockets in PHP, we're offered two sets of methods,
starting with one of these two prefixes:

socket_*: Low-level API to the socket communication available since
PHP 4.1. This extension needs to be enabled when compiling PHP with
the --enable-sockets option. You can check whether your PHP
supports this API by running php -i in the console and watching for --
enable-sockets under the Configure Command option.
stream_*: API introduced in PHP 4.3 that generalizes usage of file,
network, and other operations under a unified set of functions. Streams
in the sense of this API are resource objects that share some common
behavior. This extension is part of PHP and doesn't require any extra
steps to be enabled. More stream functions were added in PHP 5, such
as stream_socket_server(), which we'll use in a moment.

In general, we'll always want to use the newer stream_* API because it's a
built-in part of PHP and offers better functionality.

The core feature is that it's built around using resources. A resource in PHP is
a special variable holding a reference to some external resource (this can be a
socket connection, file handler, and so on). These have some limitations. For
instance, they can't be serialized, for obvious reasons, and certain methods
are not applicable with particular types of resources, such as fseek().

Working with resources and streams is unified, so we can use stream_*
functions when, for example, writing data to files instead of the
typical fwrite() function. Consider the following example, where we copy
the content of a file to another file and instead of using fwrite(),
or file_get_content() and file_put_content(), we'll
use stream_copy_to_stream():

// streams_00.php

$source = fopen('textfile.txt', 'r');

$dest = fopen('destfile.txt', 'w');

stream_copy_to_stream($source, $dest);

Both $source and $dest are resources. The stream_copy_to_stream()
function just copies the content of one stream to another. How one resource
reads the data and how the second resource writes the data is up to the inner
implementation of this resource. We could also use fseek() to move the read
cursor to some position instead of reading data from the beginning of the file:

$source = fopen('textfile.txt', 'r');

fseek($source, 5);

...

Now we have skipped the first five bytes of the file.

There are many types of resources. We can see what types we're supporting
with the get_resource_type() function.

In the following example, we create three different types of resources:

// streams_01.php

$source = fopen('textfile.txt', 'r');

echo get_resource_type($source) . "\n";

$xml = xml_parser_create();

echo get_resource_type($xml) . "\n";

$curl = curl_init();

echo get_resource_type($curl) . "\n";

We can see that each resource type is identified by a different string:

$ php streams_01.php

stream

xml

curl

In Chapter 3 , Writing a Reddit Reader with RxPHP, we read inputs from the
console by opening a stream to php://stdin and using fread() to
periodically (with IntervalObservable) get content of the current read
buffer. We also used the stream_set_blocking() function to make the read
stream nonblocking, which makes fread() return an empty string if there

was no data available.

Using an event loop is, of course, a viable option, but there's also a function
made exactly for this purpose, called stream_select().

Using the stream_select() function
Instead of looping over all streams and checking manually whether they have
any data available, we can use the stream_select() function (
http://php.net/manual/en/function.stream-select.php). This function takes
arrays of streams as parameters and waits until there's some activity on at
least one of them.

Since any resource created with fopen() is a stream, we can use this function
to wait for user input instead of using a loop:

// streams_02.php

$stdin = fopen('php://stdin', 'r');

stream_set_blocking($stdin, false);

$readStreams = [$stdin];

$writeStreams = [];

$exceptStreams = [];

stream_select($readStreams, $writeStreams, $exceptStreams, 5);

echo "stdin: " . strrev(fgets($stdin));

The stream_select() function returns the number of active streams, or zero
if the timeout elapsed. It takes five arguments in total, where the first four of
them are required:

array &$read: This is the array of read streams (streams are checked for
any available data to be read).
array &$write: This is the array of write streams. Streams listed here
need to indicate they're ready to write data.
array &$except: This is the array of streams with higher priority.
int $tv_sec: This is the maximum time in seconds spent waiting for at
least one of the streams to be active.
int $tv_usec (optional): This is the time in microseconds added to the
timeout in seconds.

Each array is passed by reference, so we can't leave it with just []; we need to
pass it as a variable (null is also acceptable). The last integer parameter 5 is

http://php.net/manual/en/function.stream-select.php

the timeout after which this function returns, even though it didn't catch any
activity on any of its streams.

So in this example, we create a resource $stdin using fopen(), then wait for
five seconds for any user input (the data is sent to the buffer by terminal after
we press the Enter key) and then use fgets() to get the data from buffer and
print it in reversed order.

Notice that we had to make the $stdin stream nonblocking anyway. If we
didn't, the stream_select() would never end, regardless the timeout.

StreamSelectLoop and stream_select()
function
We've been using the StreamSelectLoop class in Chapter 3 , Writing a
Reddit Reader with RxPHP, to periodically emit values
with IntervalObservable, or in Chapter 2 , Reactive Programming with
RxPHP, to check for user input. Let's combine what we've learned about PHP
streams, stream_select() function, and StreamSelectLoop together and
update the previous example to use StreamSelectLoop.

The StreamSelectLoop class has an addReadStream() method to add streams
(resources) and callables, which are executed when the stream is active. Then
it calls stream_select() internally and waits for activity on any of the
streams in a loop:

// stdin_loop_01.php

use React\EventLoop\StreamSelectLoop;

$stdin = fopen('php://stdin', 'r');

$loop = new StreamSelectLoop();

$loop->addReadStream($stdin, function($stream) {

 $str = trim(fgets($stream));

 echo strrev($str) . "\n";

});

$loop->run();

Finally, it should be obvious why the event loop class is called
StreamSelectLoop and not EventLoop or just Loop: it uses stream_select()
internally.

Now we know how StreamSelectLoop is able to work with PHP streams.
However, a very good question is, how do Observables such
as IntervalObservable, which periodically emit values, work when they
don't use any streams?

Scheduling events with StreamSelectLoop
Apart from using StreamSelectLoop to handle streams, we can also schedule
one-time or periodical events by just specifying an interval and a callable.

Consider the following example, which creates two timers:

// loop_01.php

use React\EventLoop\StreamSelectLoop;

$loop = new StreamSelectLoop();

$loop->addTimer(1.5, function() {

 echo "timer 1\n";

});

$counter = 0;

$loop->addPeriodicTimer(1, function () use (&$counter, $loop) {

 printf("periodic timer %d\n", ++$counter);

 if ($counter == 5) {

 $loop->stop();

 }

});

$loop->run();

The periodic timer fires every second, while the one-time timer is fired just
once after 1500ms. Output in the console will print values for the increasing
$counter variable:

$ php loop_01.php

periodic timer 1

timer 1

periodic timer 2

periodic timer 3

periodic timer 4

...

So how is StreamSelectLoop able to schedule events when we're not using
streams at all?

The answer is the stream_select() function and its fourth and fifth
arguments. Even when we're not waiting for any stream activity, we can still

make use of the timeouts provided to stream_select(). We could, in fact,
achieve the same result if we used just the usleep() function to hold the
script execution for a period of time. However, if we did use usleep(), we
wouldn't be able to combine timers with streams.

When we start the event loop with $loop->run(), it iterates all its times and
checks which timer is supposed to fire first. In our case it's the periodic timer
that'll fire after one second, so StreamSelectLoop calls stream_select()
and sets its fourth parameter (timeout) to one second. Since we didn't add any
streams to the loop, the stream_select() call will always end with a
timeout, which is intentional in this case.

If we did add a stream to the loop that would signal activity any time before
the timer is supposed to fire, then stream_select() might be interrupted and
the stream would be handled before the timer.

We can go back to our example where the StreamSelectLoop class works as
follows:

We scheduled a one-second timeout that makes stream_select()return
even when there's no stream activity.
The StreamSelectLoop class checks what timers are due and calls their
callables. Then, if the timer was periodical, it reschedules the timer to
fire again in the future.
This was the first iteration of the internal loop where stream_select()
caused the pause.
At the second iteration, it checks for the nearest timers again. This time
it's the one-time timer that'll fire in 500ms (1000ms already elapsed), so
the timeout for stream_select() is going to be just 500ms.

This goes on until we call $loop->stop() from one of the callables.

We can rewrite this example with a periodic timer to use
IntervalObservable, while also reading any input from php://stdin:

// loop_02.php

use React\EventLoop\StreamSelectLoop;

use Rx\Observable;

use Rx\Scheduler\EventLoopScheduler;

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

Observable::interval(2000, $scheduler)

 ->subscribeCallback(function($counter) {

 printf("periodic timer %d\n", $counter);

 });

$stdin = fopen('php://stdin', 'r');

$loop->addReadStream($stdin, function($stream) {

 $str = trim(fgets($stream));

 echo strrev($str) . "\n";

});

$loop->run();

Observables don't work directly with StreamSelectLoop, so we need to wrap
it with a Scheduler. The EventLoopScheduler class inherits
the VirtualTimeScheduler class that we explained in detail in the previous
chapter, when we talked about testing and how it's used with
the TestScheduler class. The principle with EventLoopScheduler is the
same.

The EventLoopScheduler class schedules timers on the StreamSelectLoop
instance, which doesn't forbid us from using the same loop for streams also.

Minimalistic HTTP Server with StreamSelectLoop

A nice example of using just StreamSelectLoop to create a simple HTTP
web server is available on the GitHub page for the react/event-loop
package:

// streams_03.php

$loop = new React\EventLoop\StreamSelectLoop();

$server = stream_socket_server('tcp://127.0.0.1:8080');

stream_set_blocking($server, 0);

$loop->addReadStream($server, function ($server) use ($loop) {

 $c = stream_socket_accept($server);

 $data = "HTTP/1.1 200 OK\r\nContent-Length: 3\r\n\r\nHi\n";

 $loop->addWriteStream($c, function($c) use (&$data, $loop) {

 $written = fwrite($c, $data);

 if ($written === strlen($data)) {

 fclose($conn);

 $loop->removeStream($c);

 } else {

 $data = substr($data, 0, $written);

 }

 });

});

$loop->addPeriodicTimer(5, function () {

 $memory = memory_get_usage() / 1024;

 $formatted = number_format($memory, 3).'K';

 echo "Current memory usage: {$formatted}\n";

});

$loop->run();

This demo uses stream_socket_server() to create a listening TCP socket
server accepting connections only from localhost on port 8080. The $server
stream is then added to the event loop, and every time a new connection is
established, it's captured by stream_select(). Then, to actually accept the
connection, we need to call the stream_socket_accept() function, which
returns another stream representing the stream to this client. Then,
with addWriteStream() we'll know when the client is ready to start receiving
data.

There are four important things to notice:

With stream_socket_server(), we can use multiple different protocols.
The most common are tcp, udp, and unix. We can get a full list of all
the available protocols with stream_get_transports().
If we have N clients there are always N+1 streams in the loop. This is
because the server stream that accepts connections is inside the event
loop as well.
When we write data to the client stream, we need to be aware that it
might not be able to write the entire response at once and we'll need to

send it in chunks. That's why we always check how many bytes were
written to the stream with fwrite().
After we're done writing data to the write stream, we close it
with fclose() and remove it from the loop because we don't need it
anymore. When a new client connection is accepted it'll have its own
write stream.

A note on nonblocking event loops
The implementation details of StreamSelectLoop suggest that it can't
guarantee that all timers will fire exactly at the time they should. For
example, if we created two timers that both need to fire after 500ms, then we
can predict pretty accurately that the first callable will be executed after
exactly 500ms. However, the callable for the second timer is dependent on
the execution time of the first callable. This means that if the first callable
took 100ms to execute; the second callable will be trigger after 600ms instead
of 500ms.

An implication of this is that the event loop is nonblocking - as long as our
code is nonblocking.

There's no parallelism in PHP, thus all code is strictly sequential. If we write
code that takes long to execute or needs to be blocking from its nature, it's
going to cause the entire event loop to also be blocking.

Using multiple StreamSelectLoop instances
In real-world PHP applications, where we need to work asynchronously with
PHP streams, Observables, HTTP servers/clients, or WebSocket
servers/clients (and basically any asynchronous code), we might need to use
multiple event loops. This means a situation where each nonblocking part of
the application requires its own event loop.

For example, we need to use an event loop to use IntervalObservable, but
we also need an event loop for a WebSocket server that needs to read data
from a PHP stream.

Consider the following example, where we simulate a similar scenario:

// loop_03.php

use React\EventLoop\StreamSelectLoop;

$loop1 = new StreamSelectLoop();

$loop1->addPeriodicTimer(1, function() {

 echo "timer 1\n";

});

$loop2 = new StreamSelectLoop();

$loop2->addTimer(2, function() {

 echo "timer 2\n";

});

$loop1->run();

$loop2->run();

In this example, the second $loop2 will never start. The PHP interpreter will
only stay in the first $loop1, which never ends because of the periodic timer.
If we did it in reverse order (calling $loop2 first and then $loop1) it would
actually work. The second loop would just be delayed by two seconds
because the first loop runs just one action and then ends (there are no other
timers active, so it'll end automatically).

This is something we need to be aware of. In Chapter 7 , Implementing
Socket IPC and WebSocket Server/Client, we'll write an app that uses a

WebSocket server and a Unix socket client that need to run at the same time.
This means they both need to be able to read data from streams in a loop. The
good thing is that the WebSocket server will use the same event loop
implementation from react/event-loop package.

The outcome of this is that, in PHP, we need to have just a single event loop,
which might be a problem with certain libraries that need to work with their
own event loop implementations, but don't expose any way we can hook
them.

However, this doesn't necessarily apply to RxJS or, in general, to JavaScript
applications where the interpreter works differently to PHP. We'll talk about
the differences when using RxJS and RxPHP in more depth in the last chapter
of this book.

Event loop interoperability in PHP

To tackle this problem there's an attempt to standardize even loop
implementations to follow the same API.

The async-interop/event-loop package defines a set of interfaces that an
even loop needs to implement to be truly interchangeable. This means that we
can write a library that only relies on the interfaces provided by async-
interop/event-loop and the end user can decide which even loop
implementation they want to use.

We can have a look at an example of StreamSelectLoop we know already
and use it only via the interface provided by async-interop/event-loop. As
of now, StreamSelectLoop doesn't implement this interface natively so we'll
need one more package wyrihaximus/react-async-interop-loop that
wraps the event loop implementation from react/event-loop with async-
interop/event-loop interface.

Our composer.json file will be very simple because we'll have just a single
required package:

{

 "require": {

 "wyrihaximus/react-async-interop-loop": "^0.1.0"

 }

}

The wyrihaximus/react-async-interop-loop package requires as
dependencies both async-interop/event-loop and react/event-loop so
we don't need to include them ourselves.

Then we'll write a minimal example that schedules two actions using the Loop
interoperability interface:

// event_interop_01.php

use Interop\Async\Loop;

use WyriHaximus\React\AsyncInteropLoop\ReactDriverFactory;

Loop::setFactory(ReactDriverFactory::createFactory());

Loop::delay(1000, function() {

 echo "second\n";

});

Loop::delay(500, function() {

 echo "first\n";

});

Loop::get()->run();

Notice that all our operations are done only on the Loop class which comes
from the async-interop/event-loop package and its static methods. We
already know that we always have to have only one event loop running at a
time. This is why all the methods on the Loop class are static.

The setFactory() method tells the Loop class how to create an instance of
our event loop. In our case we're using react/event-loop that is wrapped
inside ReactDriverFactory to follow the async-interop interface.

Event loops and future versions of RxPHP

Using event loops (and thus all operators requiring asynchronous scheduling)
has been significantly simplified in RxPHP 2 and most of the time we don't
even need to worry about starting the event loop ourselves.

Note

RxPHP 2 was supposed to be based on the async-interop/event-loop
interface. However, the specification is still unstable so the RxPHP team
decided to rollback to the RxPHP 1 style of event loops. The following
paragraphs describe how the event loops should be used in the future versions
of RxPHP (maybe RxPHP 3). At the end, RxPHP 2 is based on the
StreamSelectLoop class from the reactphp library as we're used to.

RxPHP in the future will rely on the async-interop/event-loop interface.
Since we don't want to start the loop ourselves we can autoload a bootstrap
script from RxPHP to start the loop automatically at the end of the script
execution using PHP's register_shutdown_function(). We'll update
our composer.json again and add the autoload directive:

"autoload": {

 "files": ["vendor/reactivex/rxphp/src/bootstrap.php"]

}

Now we can write any asynchronous code:

// rxphp2_01.php

use Rx\Observable;

Observable::interval(1000)

 ->take(5)

 ->flatMap(function($i) {

 return \Rx\Observable::of($i + 1);

 })

 ->subscribe(function($value) {

 echo "$value\n";

 });

Notice that we're neither creating a Scheduler nor starting the loop. In RxPHP
2 all operators have their default Scheduler predefined so we don't need to
pass it in the subscribe() method.

If we wanted to follow a similar approach as with RxPHP 1 we could
hardcode the Scheduler:

use Rx\Scheduler;

Observable::interval(1000, Scheduler::getAsync())

 ->take(5)

 ...

However, in some situations, we might not want to wait until the end of the
script for register_shutdown_function() to start the loop and we want to
start it ourselves.

Let's have a look at the following example:

// rxphp2_02.php

use Rx\Observable;

Observable::interval(1000)

 ->take(3)

 ->subscribe(function($value) {

 echo "First: $value\n";

 });

Observable::interval(1000)

 ->take(3)

 ->subscribe(function($value) {

 echo "Second: $value\n";

 });

Both Observables will start emitting values at the same time when the loop is
started so the output will be as follows:

$ php rxphp2_02.php

First: 0

Second: 0

First: 1

Second: 1

First: 2

Second: 2

We can also manually start the event loop after we create the first
Observable:

// rxphp2_03.php

Observable::interval(1000)

 ->take(3)

 ->subscribe(function($value) {

 echo "First: $value\n";

 });

Loop::get()->run();

Observable::interval(1000)

 ->take(3)

 ->subscribe(function($value) {

 echo "Second: $value\n";

 });

The loop will end after printing three values and then we carry on with the
second Observable. The event loop will be automatically started again at the
end the script execution. The output is then the following:

$ php rxphp2_03.php

First: 0

First: 1

First: 2

Second: 0

Second: 1

Second: 2

Note

Note that at the time of writing this book (April 2017) both async-
interop/event-loop and RxPHP 2 are in pre-release state and their APIs
might change.

Higher-order Observables
When talking about the prerequisites for functional programming we
mentioned higher-order functions. These are functions that return other
functions. A very similar concept is applied in RxPHP as well, when using
Observables.

A higher-order Observable is an Observable that emits other Observables. To
illustrate how higher-order Observables differ from first-order Observables,
consider the following simple example:

// higher_order_01.php

use Rx\Observable;

Observable::range(1, 3)

 ->subscribe(new DebugSubject());

This example just prints three values and completes as expected. This is what
we expect from any first-order Observable:

$ php higher_order_01.php

22:54:05 [] onNext: 1 (integer)

22:54:05 [] onNext: 2 (integer)

22:54:05 [] onNext: 3 (integer)

22:54:05 [] onCompleted

Now, we can make this more complicated by adding the map() operator that,
instead of returning an integer, returns another Observable:

// higher_order_02.php

use Rx\Observable;

Observable::range(1, 3)

 ->map(function($value) {

 return Observable::range(0, $value);

 })

 ->subscribe(new DebugSubject());

We create an Observable using range() for each value from the source
Observable. In our example, Observables that arrive to the DebugSubject
instances are supposed to emit values [0], [0, 1], and [0,1,2], respectively.

The output in console is not satisfactory. The DebugSubject instance prints
what it receives, which is an instance of RangeObservable.

This is correct behavior. We're really returning Observables from the map()
operator, and subscribe() method doesn't care what values it passes
through:

$ php higher_order_02.php

23:29:46 [] onNext: RangeObservable

(Rx\Observable\RangeObservable)

23:29:46 [] onNext: RangeObservable

(Rx\Observable\RangeObservable)

23:29:46 [] onNext: RangeObservable

(Rx\Observable\RangeObservable)

23:29:46 [] onCompleted

Note

The value for each onNext is RangeObservable
(Rx\Observable\RangeObservable) because DebugSubject receives an
object and transforms it into a string. Then it prints the class name, including
its namespace, in parentheses.

So, what if we want to flatten the inner Observables and re-emit all values
from them?

RxPHP has a couple of operators intended to work with higher-order
Observables. In particular the most useful are mergeAll(), concatAll(),
and switchLatest().

For this purpose, we can choose mergeAll() or concatAll(). The difference
between these two is the same as merge() and concat(). The mergeAll()
operator subscribes to all inner Observables right when it receives them, and
re-emits all their values immediately. On the other hand, concatAll() will
subscribe to the inner Observables one at the time, in the order it receives
them.

The concatAll() and mergeAll() operators
In this example, it doesn't matter which one we choose. The
RangeObservable is a cold Observable that uses ImmediateScheduler, so all
values are always emitted in the correct order.

Implementation with mergeAll() could look like the following:

// higher_order_03.php

Observable::range(1, 3)

 ->map(function($value) {

 return Observable::range(0, $value);

 })

 ->mergeAll()

 ->subscribe(new DebugSubject());

Now Observable::range(1, 3) emits three instances of RangeObservable.
The mergeAll() operator subscribes to each of them and re-emits all their
values to its observer, which is a DebugSubject instance.

How mergeAll() works is obvious from the following marble diagram:

Marble diagram representing the mergeAll() operator in RxJS
(http://reactivex.io/rxjs/class/es6/Observable.js)

The source Observable, represented as a horizontal line at the top, doesn't
emit values directly (there are no circles on the line). Instead, it emits other
Observables, represented by diagonal lines.

If we run this example, we'll get values as described above, which are 0, 0,
 1, 0, 1, and 2:

$ php higher_order_03.php

00:02:26 [] onNext: 0 (integer)

00:02:26 [] onNext: 0 (integer)

00:02:26 [] onNext: 1 (integer)

00:02:26 [] onNext: 0 (integer)

00:02:26 [] onNext: 1 (integer)

00:02:26 [] onNext: 2 (integer)

00:02:26 [] onCompleted

We can also test what happens if we work with Observables that emit values
asynchronously. In this case, it matters whether we use mergeAll()
or concatAll(), so we'll test both scenarios.

Let's start with mergeAll() and an example similar to the previous one. We'll
use IntervalObservable and take(3) to emit three Observables that
asynchronously emit three values:

// higher_order_04.php

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

Observable::interval(1000, $scheduler)

 ->take(3)

 ->map(function($value) use ($scheduler) {

 return Observable::interval(600, $scheduler)

 ->take(3)

 ->map(function($counter) use ($value) {

 return sprintf('#%d: %d', $value, $counter);

 });

 })

 ->mergeAll()

 ->subscribe(new DebugSubject());

$loop->run();

Each value from the inner Observable is transformed into a string to be easily
identifiable. We can describe what happens in this example by time-stamping
each value:

1000ms: The first value is emitted from the outer IntervalObservable,
which is via the map() operator turned into
another IntervalObservable. At this point, mergeAll() subscribes to
this first inner Observable.
1600ms: The inner IntervalObservable emits a first-value (integer 0),
which is converted to a string and printed by the DebugSubject instance.
2000ms: The second inner Observable is created. The mergeAll()
operator subscribes to it as well. It's subscribed to two Observables now.
2200ms: The first inner IntervalObservable emits its second value (1).
2600ms: The second inner IntervalObservable emits its first value (0).

2800ms: The first inner IntervalObservable emits its last value (2).
3000ms: The third inner IntervalObservable is created.

This continues until all inner IntervalObservable emit three values, thanks
to the take(3) operator.

We can see that the values from inner Observables are really emitted
asynchronously and, if we want to consume them, it's very easy to use the
mergeAll() operator.

The full console output is as follows:

$ php higher_order_04.php

00:43:55 [] onNext: #0: 0 (string)

00:43:55 [] onNext: #0: 1 (string)

00:43:56 [] onNext: #1: 0 (string)

00:43:56 [] onNext: #0: 2 (string)

00:43:56 [] onNext: #1: 1 (string)

00:43:57 [] onNext: #2: 0 (string)

00:43:57 [] onNext: #1: 2 (string)

00:43:57 [] onNext: #2: 1 (string)

00:43:58 [] onNext: #2: 2 (string)

00:43:58 [] onCompleted

Implementation using concatAll() is exactly the same. The only thing that
changes is how we use this operator:

// higher_order_05.php

...

 ->map(function($value) use ($scheduler) {

 // ...

 })

 ->concatAll()

 ->subscribe(new DebugSubject());

...

Just like the concat() operator, concatAll() keeps the order of Observables
and subscribes to the next Observable only after the previous Observables are
completed. The output in the console is in the order the
inner IntervalObservables are created:

$ php higher_order_05.php

00:55:30 [] onNext: #0: 0 (string)

00:55:30 [] onNext: #0: 1 (string)

00:55:31 [] onNext: #0: 2 (string)

00:55:32 [] onNext: #1: 0 (string)

00:55:32 [] onNext: #1: 1 (string)

00:55:33 [] onNext: #1: 2 (string)

00:55:34 [] onNext: #2: 0 (string)

00:55:34 [] onNext: #2: 1 (string)

00:55:35 [] onNext: #2: 2 (string)

00:55:35 [] onCompleted

The core principle of higher-order Observables isn't easy to grasp at first
sight, so feel free to experiment by yourself.

Although it's hard to see the real benefit of concat(), concatAll(), merge(),
and mergeAll() in RxPHP, these all are very common in RxJS. Typically,
when we need to run multiple HTTP requests in order or independently of
each other, it's very convenient to use one of these operators. More on this
topic is in the final chapter, which shows some interesting use-cases of RxJS.

The switchLatest Operator
With concatAll() or mergeAll(), we know we'll always receive all values
emitted from all inner Observables. In some use cases, we might care only
about values from the most recent Observable, while discarding all other
Observables. This is something we can't do with either concatAll()
or mergeAll() because these always wait until the current Observable
completes or all Observables complete, respectively.

This is why there's a switchLatest() operator that's always subscribed only
to the most recent Observable and automatically unsubscribes from the
previous one.

The following marble diagram explains this principle very well:

Marble diagram representing the switch() operator in RxJS

(http://reactivex.io/rxjs/class/es6/Observable.js)

Note

This operator is called, simply, switch() in RxJS. There are also
the switchMap() and switchMapTo() operators, currently available only in
RxJS.

In this figure, we can see that the source Observable emits two Observables.
The first inner Observable emits four values, but only two of them ("a" and
"b") are re-emitted. Before the third value is emitted the source Observable
emits another inner Observable and the current one is unsubscribed. Then it
carries on by re-emitting values from the new inner Observable.

Also, note that the inner Observable is consumed even after the source
Observable completes.

So, how is this operator going to change the output from the same example
we used for concatAll() and mergeAll()? Take a look at the following:

// higher_order_06.php

...

 ->map(function($value) use ($scheduler) {

 // ...

 })

 ->switchLatest()

 ->subscribe(new DebugSubject());

...

We know for sure we won't receive all values from all inner Observables
because each one of them is created before the previous one completes:

$ php higher_order_06.php

01:26:24 [] onNext: #0: 0 (string)

01:26:25 [] onNext: #1: 0 (string)

01:26:26 [] onNext: #2: 0 (string)

01:26:27 [] onNext: #2: 1 (string)

01:26:27 [] onNext: #2: 2 (string)

01:26:27 [] onCompleted

Each inner Observable was able to emit only its first value, and then they

were unsubscribed except for the last Observable. Since there are no more
emissions from the source Observable, switchLatest() stays subscribed to
it.

The combineLatest() operator
Both concatAll() and mergeAll() re-emit all values emitted by their inner
Observable (or Observables) one by one. There's one more operator with a
similar functionality, called combineLatest().

In contrast to the previous two, combineLatest() takes arguments as an array
of Observables and immediately subscribes to all of them. Then, the last
value emitted by each Observable is internally stored in a buffer
by combineLatest() and when all source Observables have emitted at least
one value, it emits the entire buffer as a single array. Then on any emission
from any of the source Observables the updated buffer is re-emitted again.

This is demonstrated in the following marble diagram:

Marble diagram representing the combineLatest() operator in RxJS
(http://reactivex.io/rxjs/class/es6/Observable.js)

Notice that when the first Observable emitted a, it wasn't immediately re-
emitted. Only after the second Observable emits its first value
the combineLatest() operator reemitted both of them. This means that, if we
have an array of N Observables, the observer for combineLatest() will
always receive an array of N values.

An important implication of this is that, if we had an Observable in the source
array that, for some reason, didn't emit any value, then combineLatest()
won't emit any value either because it needs to have at least one value for
each source Observable. This can be easily avoided by using
the startWith() or startWithArray() operators that prepend value
emissions before the source Observable.

Consider the following example, where we have an Observable with just a
single value, created using Observable::just(). We want to combine it
using the combineLatest() operator with an array of IntervalObservable
instances:

// combine_latest_01.php

use React\EventLoop\StreamSelectLoop;

use Rx\Scheduler\EventLoopScheduler;

use Rx\Observable;

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

$source = Observable::just(42)

 ->combineLatest([

 Observable::interval(175, $scheduler)->take(3),

 Observable::interval(250, $scheduler)->take(3),

 Observable::interval(100, $scheduler)->take(5),

])

 ->subscribe(new DebugSubject());

$loop->run();

We know for sure that the output array will always start with integer 42. This
array will be emitted for every change in the array of source Observables.

Notice that the second IntervalObservable emits its first value after 250ms,
while the third IntervalObservable emits its first value after just 100ms.
This means that we'll never receive the first value from the
third IntervalObservable. It'll never be re-emitted,
because combineLatest() needs all Observables to emit at least one value,
and in our case, it's going to wait for the second IntervalObservable, which
is the slowest one.

The console output confirms our expected behavior:

$ php combine_latest_01.php

09:42:45 [] onNext: [42,0,0,1] (array)

09:42:46 [] onNext: [42,0,0,2] (array)

09:42:46 [] onNext: [42,1,0,2] (array)

09:42:46 [] onNext: [42,1,0,3] (array)

09:42:46 [] onNext: [42,1,1,3] (array)

09:42:46 [] onNext: [42,1,1,4] (array)

09:42:46 [] onNext: [42,2,1,4] (array)

09:42:46 [] onNext: [42,2,2,4] (array)

09:42:46 [] onCompleted

The last two emissions happened only because of the second
IntervalObservable. Also, notice that, since every emission from the source
Observables triggers combineLatest() to re-emit its current values, there's
always only one updated value in the array.

If we want to be sure we'll catch all values emitted from all Observables, we
can use startWith() to set default values for each of them:

...

->combineLatest([

 Observable::interval(175, $scheduler)->take(3)-

>startWith(null),

 Observable::interval(250, $scheduler)->take(3)-

>startWith(null),

 Observable::interval(100, $scheduler)->take(5)-

>startWith(null),

])

...

Now the output is going to start with null values, and we can be sure we'll

receive all values from all source Observables:

$ php combine_latest_01.php

09:53:46 [] onNext: [42,null,null,null] (array)

09:53:46 [] onNext: [42,null,null,0] (array)

09:53:46 [] onNext: [42,0,null,0] (array)

09:53:46 [] onNext: [42,0,null,1] (array)

09:53:46 [] onNext: [42,0,0,1] (array)

09:53:46 [] onNext: [42,0,0,2] (array)

...

These four operators belong to a category of more advanced Rx features.
Although these aren't commonly used in either RxPHP or RxJS, it's very
useful to know that they exist, because it leverages the true power of Reactive
Extensions. The internal logic provided by switchMap() or combineLatest()
lets us avoid using any state variables to keep track of where we need to
subscribe/unsubscribe and what values we need to store.

We'll encounter combineLatest() and switchMap() used in one operator
chain in the next chapter. Also, in the final chapter of this book, when talking
about similarities with RxJS, we'll use a slightly modified version
of combineLatest() in JavaScript. The concatAll() and mergeAll()
Operators are useful in RxJS as well, and we can do some tricks with them
that aren't possible in RxPHP as of now; but more on that in the final chapter.

Summary
This chapter covered a lot of new topics. We're going to use all of what we
just learned in the next chapter, where we'll use Unix sockets for inter-
process communication and WebSocket server for a simple chat application.
Most importantly, we're going to use spawning subprocesses with
ProcessObservable, PHP Streams API for Unix socket communication. We
are also going to look into event loops, including use cases, where we need to
share the same instance of the event loop among Unix socket streams and a
WebSocket server. Then we will move on to higher-order Observables to
collect statuses from multiple subprocesses, and a WebSocket server and
client. PHP Streams API and higher-order Observables are, in principle, a
little harder to understand at first glance, so feel free to take your time and
experiment by yourself.

In the next chapter, we'll also introduce the concept of backpressure in Rx,
which is a common way to avoid overloading the consumer by emitting more
values that the observer is able to process.

Chapter 7. Implementing Socket
IPC and WebSocket Server/Client
In the previous chapter, we had a sneak peek at the application we're about to
build in this chapter. We already know that we'll use the PHP Streams API
for interprocess communication. We'll also write WebSocket servers and,
later, a simple WebSocket client. We also emphasized the importance of
understanding how event loops work in an asynchronous and non-blocking
application, and this will apply for both server and client applications in this
chapter.

This chapter will also be very source code-intensive, so we'll split it into three
smaller sections covering three different applications:

Server Manager application: This is the application we'll run when
testing this whole project. It'll spawn subprocesses and communicate
with them via Unix socket streams (wrapped with the PHP Streams
API). Each subprocess represents a single WebSocket server that listens
to a specific port.
WebSocket Server application: This is a single instance of the
WebSocket server that allows multiple clients to be connected at the
same time, enabling them to chat. This means we'll have to distribute
each message to all clients in real time. We'll also keep a history of a
few most recent messages that'll be populated to each new client. This
application will communicate with the Server Manager via the Unix
socket and provide its current status (the number of clients currently
connected and the number of messages in the chat history).
WebSocket Client application: This is our test client that'll connect to
WebSocket servers and listen to the user input that'll be sent to the
server.

Before we start working on the Server Manager application, we should talk
about one more concept that arises mostly in an RxJS environment, but which
is also very relevant to this chapter.

Backpressure in Reactive
Extensions
We usually think of Observables as streams of data that are produced by the
source Observable on one end and consumed by an observer at the other end.
While this is still correct, we're not aware of situations where the Observable
is emitting values so fast that the consumer (the observer) is not able to
handle them.

This could lead to significant memory or CPU usage, which we definitely
want to avoid.

There're two groups of operators suitable for backpressure, although most of
them aren't available in RxPHP and are related mostly to RxJS:

Lossy: In this group, some values are discarded and never arrive at the
observers. For example, this could be the mouse position sampled over a
certain timespan. We're usually interested in the current mouse position
right now; we don't care about position in the past, and so this can be
completely ignored.
Loss-less: In this group, values are stacked in operators and are typically
emitted in batches. We don't want to lose any data, so a typical inner
implementation of a loss-less operator is a buffer.

As we said, backpressure is more typical for RxJS than RxPHP, but let's have
a look at examples of both of these types in RxPHP.

Lossy backpressure
In the previous chapter, we used the switchLatest() operator to work with
higher-order Observables. This automatically subscribed only to the latest
Observable emitted from the source Observable and unsubscribed from the
previous source. This is, in fact, a lossy operator because we know we're not
guaranteed to receive all values.

In practice, we usually deal with use cases similar to the RxJS operator
throttleTime(). This operator takes the timespan as a parameter, which
defines how long after emitting a value it'll ignore all subsequent emissions
from the source Observable.

We can have a look at its marble diagram to be clear as to what it does:

This operator is already implemented in RxPHP, but we can implement it
ourselves using just filter(), or even better, by creating a custom operator
to see how this and similar functionality can be implemented internally.

Implementing throttleTime() with the filter() operator

We can simulate a hot source Observable with the IntervalObservable

class, which periodically emits values, and we'll filter out everything that
arrives less than a second after the previous emission.

The following example simulates a similar functionality as the
throttleTime() operator:

// filter_01.php

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

$lastTimestamp = 0;

Observable::interval(150, $scheduler)

 ->filter(function() use (&$lastTimestamp) {

 if ($lastTimestamp + 1 <= microtime(true)) {

 $lastTimestamp = microtime(true);

 return true;

 } else {

 return false;

 }

 })

 ->subscribe(new DebugSubject());

$loop->run();

Note

From now on in this book we won't include the use statements for classes
we've been using so far to keep the examples as short as possible.

If we run this example, we'll see that it does what we need:

$ php filter_01.php

14:51:01 [] onNext: 0 (integer)

14:51:02 [] onNext: 7 (integer)

14:51:03 [] onNext: 14 (integer)

14:51:04 [] onNext: 21 (integer)

...

As we can see, the IntervalObservable class emits ever-increasing counter
values, where most of them are ignored. However, this is not a very
systematic approach. We have to keep the last timestamp in a variable, which
is what we usually want to avoid with Rx.

Note that our callable for filter() doesn't take any arguments (the current
value) because it doesn't matter to us.

So let's reimplement this into a standalone ThrottleTimeOperator class:

// ThrottleTimeOperator.php

class ThrottleTimeOperator implements OperatorInterface {

 private $duration;

 private $lastTimestamp = 0;

 public function __construct($duration) {

 $this->duration = $duration;

 }

 public function __invoke($observable, $observer, $sched=null) {

 $disposable = $observable->filter(function() use ($observer)

{

 $now = microtime(true) * 1000;

 if ($this->lastTimestamp + $this->duration <= $now) {

 $this->lastTimestamp = $now;

 return true;

 } else {

 return false;

 }

 })->subscribe($observer);

 return $disposable;

 }

}

As we saw multiple times in previous chapters, when implementing custom
operators we need to be aware of correctly propagating not only onNext
signals, but also onError and onComplete. We can delegate all this
responsibility by reusing already existing operators, which is in fact a
recommended way of implementing new operators to Rx. This means that
our operator just sets up a filter() operator that takes care of everything for
us.

Using this operator is simple with the lift() method:

// throttle_time_01.php

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

$lastTimestamp = 0;

Observable::interval(150, $scheduler)

 ->lift(function() {

 return new ThrottleTimeOperator(1000);

 })

 ->subscribe(new DebugSubject());

$loop->run();

The result printed to the console is exactly the same as we saw in the
preceding code, so we don't need to list it here again.

So this is a lossy operator. All values that don't pass the predicate function to
filter() are lost forever.

In RxJS 5, typical lossy operators are audit(), auditTime(), throttle(),
throttleTime(), debounce(), debounceTime(), sample(), and
sampleTime(). In RxJS 4, we also have the pause() operator.

Loss-less backpressure
Loss-less operators are those that don't discard any values. Values are just
stacked and sent to observers in batches.

In RxPHP, we can use the bufferWithCount() operator that takes as an
argument the number of items stored in the buffer before emitting them to the
observers. Optionally, we can also specify the number of items from the
beginning of the previous buffer we want to skip.

The marble diagram explains this very well (this operator is available in RxJS
5 as bufferCount()):

As you can see, using the bufferWithCount() operator is very simple. We'll
use the same example as shown previously and just switch operators:

// buffer_with_count_01.php

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

$lastTimestamp = 0;

Observable::interval(500, $scheduler)

 ->bufferWithCount(4)

 ->subscribe(new DebugSubject());

$loop->run();

We're always buffering four values, so when the source IntervalObservable
class emits a value every 500 ms, the observer will receive a value every two
seconds:

$ php buffer_with_count_01.php

15:24:24 [] onNext: [0,1,2,3] (array)

15:24:26 [] onNext: [4,5,6,7] (array)

15:24:28 [] onNext: [8,9,10,11] (array)

15:24:30 [] onNext: [12,13,14,15] (array)

RxJS 5 has five different buffer operator variants.

Both lossy and loss-less operators are useful, and we'll use the
throttleTime() operator in a moment when implementing the Server
Manager application.

Implementing ProcessObservable
The application in this chapter is going to spawn subprocesses a lot so it
makes sense to wrap this functionality into a self-sufficient Observable. This
Observable will spawn a new subprocess, emit its output with onNext and
also properly handle onError and onComplete notifications:

// ProcessObservable.php

class ProcessObservable extends Observable {

 private $cmd;

 private $pidFile;

 public function __construct($cmd, $pidFile = null) {

 $this->cmd = $cmd;

 $this->pidFile = $pidFile;

 }

 public function subscribe($observer, $scheduler = null) {

 $process = new Process($this->cmd);

 $process->start();

 $pid = $process->getPid();

 if ($this->pidFile) {

 file_put_contents($this->pidFile, $pid);

 }

 $disposable = new CompositeDisposable();

 $autoObs = new AutoDetachObserver($observer);

 $autoObs->setDisposable($disposable);

 $cancelDisp = $scheduler→schedulePeriodic(function()

 use ($autoObs, $process, $pid, &$cancelDisp) {

 if ($process->isRunning()) {

 $output = $process->getIncrementalOutput();

 if ($output) {

 $autoObs->onNext($output);

 }

 } elseif ($process->getExitCode() === 0) {

 $output = $process->getIncrementalOutput();

 if ($output) {

 $autoObs->onNext($output);

 }

 $autoObs->onCompleted();

 } else {

 $e = new Exception($process->getExitCodeText());

 $autoObs->onError($e);

 }

 }, 0, 200);

 $disposable->add($cancelDisp);

 $disposable->add(new CallbackDisposable(

 function() use ($process) {

 $process->stop(1, SIGTERM);

 if ($this->pidFile) {

 unlink($this->pidFile);

 }

 }));

 return $disposable;

 }

}

This Observable internally uses the Symfony\Component\Process\Process
class from Symfony3 components, which makes working with subprocesses
easier.

It periodically checks for any available output from the subprocess and emits
it. When the process terminates, we send proper onError or onComplete
notifications. We can also optionally create a file with the process PID if we
need to.

Notice that we used the AutoDetachObserver class to wrap the original
observer and assigned it the $disposable object. For now it's just important
to know that this class automatically calls dispose() on the disposable we
passed it when it receives onError or onComplete notification.

We'll explain the AutoDetachObserver class in more detail in Chapter 10,
Using Advanced Operators and Techniques in RxPHP.

We can test this Observable with a small script simulating a long-running
process:

// sleep.php

$name = $argv[1];

$time = intval($argv[2]);

$elapsed = 0;

while ($elapsed < $time) {

 sleep(1);

 $elapsed++;

 printf("$name: $elapsed\n");

}

Then we use the ProcessObservable to spawn this process and re-emit all its
output:

// process_observable_01.php

$loop = new React\EventLoop\StreamSelectLoop();

$scheduler = new Rx\Scheduler\EventLoopScheduler($loop);

$pid = tempnam(sys_get_temp_dir(), 'pid_proc1');

$obs = new ProcessObservable('php sleep.php proc1 3', $pid);

$obs->subscribe(new DebugSubject(), $scheduler);

$loop->run();

This will just print one line every second and then end:

$ php process_observable_01.php

11:59:05 [] onNext: proc1: 1

 (string)

11:59:06 [] onNext: proc1: 2

 (string)

11:59:07 [] onNext: proc1: 3

 (string)

11:59:07 [] onCompleted

Now let's start with the main application for this chapter.

Server Manager application
Finally, we can start writing the largest application so far. The Server
Manager is going to be a CLI application that will be responsible for
spawning WebSocket servers, where each server is a standalone application
itself, with its own clients and chat history.

A typical use-case could be a Unix server that manages multiple instances of
some game server. Each server needs to be isolated. If any of them crashed,
we don't want all games servers on this machine to crash as well. At the same
time, we want to be able to collect some status information from servers and
monitor them in real time with the Server Manager.

We can describe the structure of this entire application and what role the
Server Manager has with the following diagram:

In this diagram, we can see the Server Manager application on the right. It
communicates via Unix sockets with a single instance of Game Server. This
instance of Game Server has two clients connected to it via WebSockets.

Communication between the Server Manager and the Game Server is only
one way; the Game Server will actively send its status to the Server
Manager itself. Communication between the Game Server and all its clients
has to be two-way. When a user sends a message, we need to resend it to all
other clients connected to the same Game Server.

We'll start with just creating a basic class stub that listens to user input via
stdin, and, based on that, calls some action:

// ServerManager.php

class ServerManagerCommand extends Command {

 private $scheduler;

 private $loop;

 private $unixSocketFile;

 private $output;

 private $commands = [

 'n' => 'spawnNewServer',

 'q' => 'quit',

];

 protected function configure() {

 $this->setName('manager');

 $this-

>addArgument('socket_file',InputOption::VALUE_REQUIRED);

 }

 protected function execute($input, $output) {

 $this->output = $output;

 $this->unixSocketFile = $input->getArgument('socket_file');

 @mkdir(dirname($this->unixSocketFile), 0766, true);

 $loop = new React\EventLoop\StreamSelectLoop();

 $this->loop = $loop;

 $this->scheduler = new EventLoopScheduler($this->loop);

 $subject = new Subject();

 $stdin = $subject->asObservable();

 $stdinRes = fopen('php://stdin', 'r');

 $loop->addReadStream($stdinRes, function($s) use ($subject) {

 $str = trim(fgets($s, 1024));

 $subject->onNext($str);

 });

 foreach ($this->commands as $pattern => $method) {

 $stdin

 ->filter(function($string) use ($pattern) {

 return $pattern == $string;

 })

 ->subscribeCallback(function($value) use ($method) {

 $this->$method($value);

 });

 }

 // ... We'll continue here later

 $this->loop->run();

 }

}

$command = new ServerManagerCommand();

$application = new Application();

$application->add($command);

$application->setDefaultCommand($command->getName());

$application->run();

We created a stream from php://stdin and added it to the event loop. This is
exactly what we've seen in the previous chapter when talking about the PHP
Streams API. To make adding new commands easy, we created a Subject
instance where we call onNext() on any user input.

We don't subscribe to the Subject instance directly, but rather to an
Observable returned from its asObservable() method. Of course, we could
subscribe directly to the Subject instance since it acts as an Observable and
an observer at the same time. However, if anyone had access to the Subject
instance, then we can't be sure that somebody won't call its onNext() or
onComplete() by mistake, which might cause unpredictable behavior. For
this reason, it's good practice to hide the fact that we're using Subject
internally and expose only Observables using asObservable().

We have two commands at this moment:

n: This command spawns a new subprocess using ProcessObservable
and adds its disposable to the list of running processes. We'll use these

disposables to unsubscribe later. Each subprocess will be assigned a
unique port number. This port will be used by the Game Server to start
the WebSocket server.
q: This command is used to quit this application. This means we need to
call dispose() on all disposables from the array of active processes,
close all Unix socket connections, and then stop the event loop.

We'll now implement creating new subprocesses and quitting the application.
To quit the application, we'll need the array of all socket connections
($processes private property) that we don't have yet.

Creating new subprocesses with
ProcessObservable
We don't need anything special to create a new subprocess, because we'll use
the ProcessObservable class that we created previously. Each subprocess
will have its own port number assigned, where it'll run its WebSocket server:

class ServerManager extends Command {

 /** @var DisposableInterface[] */

 private $processes = [];

 // ...

 private function spawnNewServer() {

 $port = $this->startPort++;

 $cmd = 'php GameServer.php game-server '

 . $this->unixSocketFile . ' ' . $port;

 $cmd = escapeshellcmd($cmd);

 $process = new ProcessObservable($cmd);

 $this->output->writeln('Spawning process on port '.$port);

 $this->processes[$port] = $process->subscribeCallback(

 null,

 function($e) use ($port) {

 $msg = sprintf('%d: Error "%s"', $port, $e);

 $this->output->writeln($msg);

 },

 function() use ($port) {

 $this->output->writeln(sprintf('%d: Ended', $port));

 }, $this->scheduler

);

 }

 private function quit() {

 foreach ($this->servers as $server) {

 $server->close();

 }

 foreach ($this->processes as $process) {

 $process->dispose();

 }

 $this->loop->stop();

 }

}

We spawn a new subprocess and then subscribe to it to read its output. We're
not, in fact, expecting to receive any output; we're doing this just in case the
subprocess crashed and we want to see what happened.

Note that we're also passing the single instance of Scheduler to
subscribeCallback() using $this->scheduler. We need to do this because
ProcessObservable adds its own periodic timer to check for output from the
subprocess. This is one of the cases where we need to be sure to use just a
single event loop, as we were talking about in the previous chapter.

All disposables will be stored in the $processes array organized by their port
numbers. It's important to keep references to all disposables so that we can
end all subprocesses gently by just disposing them (ProcessObservable will
send a SIGTERM signal).

Game Server application
We'll switch for a moment to the Game Server application. We'll only make
the most essential part of it, the one that connects to the Unix socket server
and periodically sends a value from IntervalObservable.

We want to do this to be able to test that the Server Manager receives and
displays statuses correctly. This is the part where we'll use switchMap() and
combineLatest() operators to work with higher-order Observables.

We won't bother with WebSocket implementation right now - that'll come
later:

// GameServer.php

class GameServer extends Command {

 /** @var StreamObservable */

 private $streamObservable;

 protected function configure() {

 $this->setName('game-server');

 $this-

>addArgument('socket_file',InputOption::VALUE_REQUIRED);

 $this->addArgument('port', InputOption::VALUE_REQUIRED);

 }

 protected function execute($input, $output) {

 $file = $input->getArgument('socket_file');

 $port = $input->getArgument('port');

 $client = stream_socket_client("unix://".$file, $errno,

$err);

 stream_set_blocking($client, 0);

 $loop = new React\EventLoop\StreamSelectLoop();

 $this->streamObservable = new

StreamObservable($client,$loop);

 $this->streamObservable->send('init', ['port' => $port]);

 $this->streamObservable->send('status', 'ready');

 $scheduler = new EventLoopScheduler($loop);

 Observable::interval(500, $scheduler)

 ->subscribeCallback(function($counter) {

 $this->streamObservable->send('status', $counter);

 });

 $loop->run();

 // WebSocket server will go here...

 }

}

Using the stream_socket_client() function, we connect to the Unix socket
server.

Note that right after the connection is established we send two messages to
the Server Manager. The first one is indicating that the subprocess is running
with init, and it also indicates which port it's using (the port for the
WebSocket server). The second message is status with just a string, ready".
This is what we'll display in the Server Manager. Then we create
IntervalObservable, which sends a status via the Unix socket stream every
500 ms.

We're using some mystery StreamObservable class that we haven't
implemented yet. The Unix socket stream is, in fact, a two-way channel, so it
makes sense to wrap its connection with an Observable for convenience.
When it receives data, it calls onNext(), and when we close the connection, it
calls onComplete().

This Observable also sends data, so it might look like a Subject instance
could better fit this purpose. Although it sends data via the send() method, it,
in fact, writes directly to the stream with fwrite(). Subjects are designed to
send data to observers, which is not our case.

The StreamObservable class is then a relatively simple Observable that adds
its stream to the event loop and emits all the data it receives:

// StreamObservable.php

class StreamObservable extends Observable {

 protected $stream;

 protected $subject;

 protected $loop;

 public function __construct($stream, LoopInterface $loop) {

 $this->stream = $stream;

 $this->loop = $loop;

 $this->subject = new Subject();

 $this->loop->addReadStream($this->stream, function ($stream)

{

 $data = trim(fgets($stream));

 $this->subject->onNext($data);

 });

 }

 public function subscribe($observer, $scheduler = null) {

 return $this->subject->subscribe($observer);

 }

 public function send($type, $data) {

 $message = ['type' => $type, 'data' => $data];

 fwrite($this->stream, json_encode($message) . "\n");

 }

 public function close() {

 $this->loop->removeReadStream($this->stream);

 fclose($this->stream);

 $this->subject->onCompleted();

 }

}

Now it should be obvious how the GameServer class works. After we
implement the WebSocket server, we'll use the send() method on
StreamObservable to report its status to the Server Manager. However,
instead of using IntervalObservable and its incrementing counter, we'll
send the number of clients connected and the number of messages in the chat
history.

Let's go back to the Server Manager and implement the Unix socket server
that is required to establish the connection between the Game Server and
Server Manager.

Server Manager and the Unix
socket server
In order to be able to use stream_socket_client() to connect to a socket
server, we need to first create the server with stream_socket_server(). The
principle is identical to what we saw in the previous chapter when explaining
the example with a simple HTTP server, made just using
stream_socket_server(), stream_socket_accept(), and
StreamSelectLoop:

class ServerManager extends Command {

 // ...

 private $statusSubject;

 private $servers = [];

 protected function execute($input, $output) {

 // ...

 @unlink($this->unixSocketFile);

 $address = "unix://" . $this->unixSocketFile;

 $server = stream_socket_server($address, $errno, $errMsg);

 stream_set_blocking($server, 0);

 $this->loop->addReadStream($server, function() use ($server)

{

 $client = stream_socket_accept($server);

 $server = new GameServerStreamEndpoint($client,$this-

>loop);

 $server->onInit()->then(function($port) use ($server) {

 $msg = sprintf('Sub-process %d initialized', $port);

 $this->output->writeln($msg);

 $this->addServer($port, $server);

 });

 });

 $this->statusSubject = new Subject();

 // ... We'll continue here later

 }

 private function addServer($port, $server) {

 $this->servers[$port] = $server;

 $this->statusSubject->onNext(null);

 }

}

Accepting new connections via Unix sockets is analogous to TCP
connections. In the GameServer class, we saw that the first status call it
always makes after establishing the connection is "init", along with its port
number to tell the Server Manager which Game Server is initialized and
ready to start receiving WebSocket clients. We also said that we need to keep
track of all active connections in order to be able to close them when we want
to quit the application. Collecting statuses from each subprocess requires us
to be able to distinguish which socket connection belongs to which
subprocess (and which port we assigned to it).

This is why, when we accept a new connection, we wrap it with the
GameServerStreamEndpoint class that has an onInit() method returning an
instance of the Promise class. This Promise class is then resolved with the
subprocess port number (see GameServer class) when the new connection
sends its init status. After this, we finally add the connection into the array
of connections (with port numbers as keys) using the addServer() method.

Note that we're keeping one array for processes (the $processes property)
and another array for stream connections wrapped with
GameServerStreamEndpoint (the $servers property).

Also note that at the end of the addServer() method, we call
$statusSubject->onNext(null). This will trigger an update to the
collection of subscriptions to subprocess statuses. We'll come to this in a
moment.

Implementing the
GameServerStreamEndpoint class
This class is going to combine the StreamObservable that we created a
moment ago, Promises, the Deferred class, and Observables. This way, we
can completely hide its internals where we decode the JSON strings received
from the stream, and filter messages by their type:

// GameServerStreamEndpoint.php

class GameServerStreamEndpoint {

 private $stream;

 private $initDeferred;

 private $status;

 public function __construct($stream, LoopInterface $loop) {

 $this->stream = new StreamObservable($stream, $loop);

 $this->initDeferred = new Deferred();

 $decodedMessage = $this->stream

 ->lift(function() {

 return new JSONDecodeOperator();

 });

 $unsubscribe = $decodedMessage

 ->filter(function($message) {

 return $message['type'] == 'init';

 })

 ->pluck('data')

 ->subscribeCallback(function($data) use (&$unsubscribe) {

 $this->initDeferred->resolve($data['port']);

 $unsubscribe->dispose();

 });

 $this->status = $decodedMessage

 ->filter(function($message) {

 return $message['type'] == 'status';

 })

 ->pluck('data')

 ->multicast(new ReplaySubject(1));

 $this->status->connect();

 }

 public function getStatus() {

 return $this->status;

 }

 public function onInit() {

 return $this->initDeferred->promise();

 }

 public function close() {

 return $this->stream->close();

 }

}

We subscribe to the StreamObservable instance to decode any incoming
messages (the $decodedMessage variable). Then, with filter() operators,
we pass through only messages of particular types.

If the message type is init, we resolve the Promise object returned from
onInit(). We know there should never be multiple init calls, so we can
unsubscribe right after that.

A slightly more complicated situation is when we receive the status
message. We chain $decodedMessage with the multicast() operator. This is
an operator we haven't met yet, and we'll look into it in more detail in the
next chapter. For now, we just need to know that this operator subscribes to
its source Observable using an instance of Subject that we provided, which
in this case is ReplaySubject. Then, it returns a ConnectableObservable
(see Chapter 3 , Writing a Reddit Reader with RxPHP).

The important thing with multicast() is that it creates a single subscription
to its source Observable. We're using ReplaySubject purposely because it
remembers the last value it emitted, so if we subscribe to the Observable
returned from getStatus() multiple times, we'll always receive the most
recent value immediately.

There're multiple variants of the multicast() operator, each with a slightly
different purpose, but more on that in Chapter 8, Multicasting in RxPHP and
PHP7 pthreads Extension.

Displaying real-time statuses from
subprocesses
In order to display the status of a single GameServerStreamEndpoint, we can
subscribe to the Observable returned from getStatus(), which is, in fact, a
ConnectableObservable.

However, our use-case isn't that simple. What if we spawn a new subprocess
and want to subscribe to it as well? For N subprocesses, we need N
subscriptions. Also, our requirement is to monitor all statuses in real time, so
this looks like we could use the combineLatest() operator with an array of
Observables (an array of Observables emitting statuses). The problem is that
we don't know how many Observables we'll have because we're going to add
them on the go by spawning new subprocesses.

One solution could be using combineLatest() to subscribe to all current
status Observables and, when a new subprocess is created, unsubscribing and
creating a new array of status Observables for the combineLatest() operator.
This is, of course, doable, but there's a better and more elegant solution using
the switchLatest() operator and higher-order Observables from Chapter 6,
PHP Streams API and Higher-Order Observables.

We'll first demonstrate the principle on a separate example and then apply it
to the ServerManager class.

Combining the switchLatest() and combineLatest() operators

Let's say we add a new server every 1000 ms, but one of the existing servers
updates its status every 600 ms. This means we need to recreate a new
Observable with combineLatest() every second from the current array of
servers.

Consider the following example where we simulate this situation using two
IntervalObservables:

// switch_latest_01.php

$range = [1];

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

$newServerTrigger = Observable::interval(1000, $scheduler);

$statusUpdate = Observable::interval(600, $scheduler)->publish();

$statusUpdate->connect(); // Make it hot Observable

$newServerTrigger

 ->map(function() use (&$range, $statusUpdate) {

 $range[] = count($range) + 1;

 $observables = array_map(function($val) {

 return Observable::just($val);

 }, $range);

 return $statusUpdate

 ->combineLatest($observables, function() {

 $values = func_get_args();

 array_shift($values);

 return $values;

 });

 })

 ->switchLatest()

 ->take(8)

 ->doOnCompleted(function() use ($loop) {

 $loop->stop();

 })

 ->subscribe(new DebugSubject());

$loop->run();

Instead of the array of servers, we use a $range variable that we're constantly
expanding, and instead of real statuses, we just wrap values with
Observable::just().

The Observable $statusUpdate emits independently on the $statusUpdate
Observable, which makes the combineLatest() operator sometimes re-emit
the same values without any change, while being subscribed to the same
array of Observables.

The core parts of this Observable chain are obviously combineLatest() and
switchLatest(). Since $newServerTrigger represents adding a new server,

we need to provide combineLatest() with a fresh array of Observables that
we want to subscribe to. Then switchLatest() unsubscribes from the
previous Observable returned by combineLatest() and subscribes to the new
one.

You might wonder why we're using func_get_args() and array_shift() to
get the values passed to the callable. The Operator combineLatest() passes
values for each source Observable unpacked (N source Observables result in
N function parameters), but we don't know how many source Observables
we're going to have. That's why we take all arguments as a single array and
then remove the first item. The first item is a value from $statusUpdate that
is also included by combineLatest() as a source Observable, but for us it has
no purpose, so we won't re-emit it.

Note

Note that the selector function for the combineLatest() is optional. If we
don't provide it, the operator will just pass all values from all source
Observables in a single array.

The output in the console will look as follows:

$ php switch_latest_01.php

12:18:32 [] onNext: [1,2] (array)

12:18:32 [] onNext: [1,2] (array)

12:18:33 [] onNext: [1,2,3] (array)

12:18:34 [] onNext: [1,2,3] (array)

12:18:34 [] onNext: [1,2,3,4] (array)

12:18:35 [] onNext: [1,2,3,4,5] (array)

12:19:25 [] onNext: [1,2,3,4,5] (array)

12:19:26 [] onNext: [1,2,3,4,5,6] (array)

22:54:16 [] onCompleted

The following is the timestamped order of events in this example:

1000 ms: The $newServerTrigger Observable fires for the first time and
appends the second item to the $range array. The operator
combineLatest() is now subscribed to two Observables created with
Observable::just(). Since these are both cold, the combineLatest()

re-emits their values immediately because it already has a value for each
of them.
1200 ms: The $statusUpdate Observable fires (it's a hot Observable
thanks to publish() and connect(), so it was emitting the event even
though we weren't subscribed to it). This makes combineLatest() fire
again.
1800 ms: The $statusUpdate Observable fires yet again, which makes
combineLatest() emit for the third time. We get the same result as
before because there're still only two Observables at this moment.
2000 ms: The $newServerTrigger Observable fires and appends a new
item to $range. Now the combineLatest() operator subscribes to three
Observables.

This goes on until we collect eight emissions in total (thanks to the take(8)
operator). This was a really practical example of higher-order Observables in
action.

We can reimplement it with the Server Manager application now:

class ServerManager extends Command {

 // ...

 protected function execute($input, $output) {

 // ...

 $this->statusSubject

 ->map(function() {

 $observables = array_map(function($server) {

 /** @var GameServerStreamEndpoint $server */

 return $server->getStatus();

 }, $this->servers);

 return Observable::just(true)

 ->combineLatest($observables, function($array) {

 $values = func_get_args();

 array_shift($values);

 return $values;

 });

 })

 ->switchLatest()

 ->map(function($statuses) {

 $updatedStatuses = [];

 $ports = array_keys($this->servers);

 foreach ($statuses as $index => $status) {

 $updatedStatuses[$ports[$index]] = $status;

 }

 return $updatedStatuses;

 })

 ->subscribeCallback(function($statuses) use ($output) {

 $output->write(sprintf("\033\143")); // clean screen

 foreach ($statuses as $port => $status) {

 $str = sprintf("%d: %s", $port, $status);

 $output->writeln($str);

 }

 });

 // ...

 }

}

This is exactly the same chain of operators, just a little enhanced by adding
port numbers for each status.

When we add a new server in the addServer() method, we trigger
$statusSubject, which recreates the array of Observables with statuses.
Then, when the status of any of the servers is updated, it triggers
combineLatest() directly because that's the only subscriber for them.

Now it should also make sense why we used ReplaySubject when writing
GameServerStreamEndpoint. When we resubscribe to already existing status
Observables, we want to have at latest one value always available, so that
combineLatest() doesn't have to wait until all of its source Observables emit
a value. They already did thanks to ReplaySubject, which emits the latest
value right on subscription.

We can test how this works by running the ServerManager.php script. The
GameServer instances will periodically emit values with
IntervalObservable now, so we should already be getting status updates.

So let's start the ServerManager.php application:

$ php ServerManager.php manager ./var/server.sock

Listening on socket ./var/server.sock

Running ...

This command takes a path to the Unix socket file as an argument. It
automatically passes this file path to all subprocesses so they know where
they should try to connect. Now, we can press n characters followed by the
Enter key to spawn a couple of subprocesses. Each subprocess first sends the
ready status and then starts emitting values from the IntervalObservable
class.

The output could look like the following:

8888: 28

8889: 15

8890: 14

8891: ready

Then you can press Q followed by the Enter key to gracefully quit the
application.

Note

Notice that we used the operator chain map(callback)->switchLatest().
This combination of operators has a shortcut flatMapLatest(callback).
However, to make our code more explicit we'll typically use the longer and
more obvious variant.

Finally, we can implement the WebSocket server and client.

Implementing a WebSocket server
To implement a WebSocket server, we'll use a library called
cboden/ratchet:

$ composer require cboden/ratchet

A WebSocket server is represented by a class implementing the
MessageComponentInterface interface with four methods onOpen(),
onClose(), onError(), and onMessage(). How this class behaves on each of
the events is up to the developer. Usually in chat applications, we want to
keep all active connections in an array of clients and read messages, with
onMessage() to resend them to all clients.

We'll first implement only the required methods and then add some custom
ones as well:

// ChatServer.php

use Ratchet\MessageComponentInterface;

use Ratchet\ConnectionInterface;

class ChatServer implements MessageComponentInterface {

 private $connections;

 private $history = [];

 private $subject;

 public function __construct() {

 $this->subject = new Subject();

 }

 public function onOpen(ConnectionInterface $conn) {

 $this->connections[] = $conn;

 foreach (array_slice($this->history, -5, 5) as $msg) {

 $conn->send($msg);

 }

 $this->subject->onNext(null);

 }

 public function onMessage(ConnectionInterface $from, $msg) {

 $this->history[] = $msg;

 foreach ($this->connections as $conn) {

 if ($from !== $conn) {

 $conn->send($msg);

 }

 }

 $this->subject->onNext(null);

 }

 public function onClose(ConnectionInterface $conn) {

 foreach ($this->connections as $index => $client) {

 if ($conn !== $client) {

 unset($this->connections[$index]);

 }

 }

 $this->subject->onNext(null);

 }

 public function onError(ConnectionInterface $conn, $e) {

 $this->onClose($conn);

 }

}

It should be obvious what this code does without any further explanation. Just
note that we're using $subject to signal that its status has changed and needs
to be sent to the Server Manager via Unix sockets.

Now we can add more methods. In particular, we'll need getObservable(),
where we'll subscribe to be notified with the current statuses:

class ChatServer implements MessageComponentInterface {

 // ...

 public function getObservable() {

 return $this->subject

 ->map(function() {

 return sprintf('clients: %d, messages: %d',

 $this->getClientsCount(),

 $this->getChatHistoryCount()

);

 });

 }

 private function getClientsCount() {

 return count($this->connections);

 }

 private function getChatHistoryCount() {

 return count($this->history);

 }

}

This class itself isn't enough to start a WebSocket server.

The WebSocket connection is first established as a normal HTTP connection,
and then it's upgraded to a WebSocket connection.

Back in the GameServer class, we subscribe to the Observable returned from
the getObservable() method to be notified when the status for this chat
server changes and needs to be sent to the Server Manager. The status of the
chat server is represented by the current number of clients and the total
number of messages in the chat history:

class GameServer extends Command {

 // ...

 protected function execute($input, $output) {

 // ...

 $webSocketServer = new ChatServer();

 $socket = new Reactor($loop);

 $socket->listen($port, '0.0.0.0');

 $server = new IoServer(

 new HttpServer(new WsServer($webSocketServer)),

 $socket,

 $loop

);

 $webSocketServer->getObservable()

 ->subscribeCallback(function($status) {

 $this->streamObservable->send('status', $status);

 });

 $server->run();

 }

}

When we're already in the GameServer class, we can see how to use
backpressure in practice. With multiple Game Servers, where each is emitting
values multiple times a second, we might want to use ThrottleTimeOperator
to limit emissions via the Unix socket stream:

Observable::interval(500, $scheduler)

 ->lift(function() {

 return new ThrottleTimeOperator(2000);

 })

 ->subscribeCallback(function($counter) {

 $this->streamObservable->send('status', $counter);

 });

Now, each GameServer class will send its status at most once every two
seconds. In a real-world application, we'll obviously not use
IntervalObservable, and leave emitting statuses to $webSocketServer-
>getObservable(). Either way, the use of backpressure and
ThrottleTimeOperator remains the same.

Implementing a WebSocket client
To implement a WebSocket client, we're going to use another PHP library
called ratchet/pawl:

$ composer require ratchet/pawl 0.2.2

The client will read input from php://stdin and send it via WebSocket to
the server. It'll also watch for any incoming messages and print them to the
console:

// GameClient.php

use function Ratchet\Client\connect;

class GameClient extends Command {

 protected function configure() {

 $this->setName('chat-client');

 $this->addArgument('port', InputArgument::REQUIRED);

 $this->addArgument('address', InputArgument::OPTIONAL,

 '', '127.0.0.1');

 }

 protected function execute($input, $output) {

 $port = $input->getArgument('port');

 $address = $input->getArgument('address');

 $stdin = fopen('php://stdin', 'r');

 $loop = new StreamSelectLoop();

 connect('ws://' . $address . ':' . $port, [], [], $loop)

 ->then(function($conn) use ($loop, $stdin, $output) {

 $loop->addReadStream($stdin,

 function($stream) use ($conn, $output) {

 $str = trim(fgets($stream, 1024));

 $conn->send($str);

 $output->writeln("> ${str}");

 });

 $conn->on('message', function($str) use ($conn,$output)

{

 $output->writeln("< ${str}");

 });

 }, function ($e) use ($output) {

 $msg = "Could not connect: {$e->getMessage()}";

 $output->writeln($msg);

 });

 }

}

The WebSocket client is created using the connect() function, where, as a
protocol, we use ws. This method returns a Promise that's resolved with the
WebSocket connection object when the connection is established or
otherwise rejected. This function also requires an event loop where we have
to provide our single instance of StreamSelectLoop. The same event loop is
used to read from the fopen() stream.

If we didn't provide the event loop directly, the connect() function would
create its own instance internally. This loop would cause exactly what we
described in the previous chapter, and the inner loop reading from the
php://stdin stream would never run.

We also use this connection object to set up event listeners with the on()
method and to send data to the server with the send() method. All sent
messages are prefixed with >, while all received messages are prefixed with
<.

Now we can use this client to test the real usage of the Server Manager. If we
run three instances of GameClient and send some example messages, the
output might look like the following:

$ php GameClient.php chat-client 8890

Hello, World!

> Hello, World!

< Test!

Then, monitoring real-time statuses might look like this:

8888: ready

8889: clients: 1, messages: 0

8890: clients: 1, messages: 2

8891: ready

Any new WebSocket client or any new message causes an immediate update
to this overview.

Summary
This chapter was really code intensive, with a lot of examples based on using
Unix sockets and WebSockets. We also utilized a lot of what we've learned in
this and the previous chapter, including higher-order Observables, with
swtichLatest() and combineLatest(), backpressure and which operators
we can use, using event loops with multiple streams, and using the
multicast() operator to share a single subscription among multiple
observers.

In the next chapter, we'll have a look at multicasting in Rx and start using the
pthreads PHP extension to leverage true parallelism with threads that would
normally be hardly achievable.

Chapter 8. Multicasting in RxPHP
and PHP7 pthreads Extension
To make use of multiple CPUs and multiple cores, we've been using
subprocesses. This is, of course, a very easy and safe method to run code in
parallel. In combination with Unix sockets, we can make inter-process
communication happen with ease. In the previous chapter, we combined all
of this with RxPHP to make applications that were completely separated and
run in parallel.

In this chapter, we'll have a look at a very interesting PHP7 extension called
pthreads, which allows multithreading in PHP using POSIX threads.

In particular, this chapter will cover the following topics:

A deeper look into the Subject class and its variants.
Multicasting operators in RxPHP and all its derivatives
Examples of ConnectableObservable and MulticastObservable
Using a single instance of the Subject with multiple source Observables
Basics of multithreading in PHP
Notes on today's state of the pthreads extension, its two major versions,
and its current practical usage
Writing a couple of multithreaded applications with the pthreads
extension that'll demonstrate how to use the Thread, Worker, and Poll
classes

Before we go parallel, we should have a look at yet another feature of
Reactive Extensions called multicasting, which involves the multicast()
operator and its derivates. Multicasting is build around Subjects so let's first
have a better look at what different types of Subject are available to us.

Subjects
We've been using Subjects in this book since Chapter 2, Reactive
Programming with RxPHP, but there're multiple different variants of the
Subject class for more specific use cases where all of them are relevant to
multicasting.

BehaviorSubject
The BehaviorSubject class extends the default Subject class and lets us set
a default value that is passed to its observer right on subscription. Consider
this very simple example of BehaviorSubject:

// behaviorSubject_01.php

use Rx\Subject\BehaviorSubject;

$subject = new BehaviorSubject(42);

$subject->subscribe(new DebugSubject());

When DebugSubject subscribes to the BehaviorSubject class, the default
value 42 is emitted immediately. This is a similar functionality to using the
startWith() operator.

The output is then just a single line:

$ php behaviorSubject_01.php

15:11:54 [] onNext: 42 (integer)

ReplaySubject
The ReplaySubject class internally contains an array of the last N values it
received and automatically re-emits them to every new observer on
subscription.

In the following example, we subscribe to RangeObservable,
which immediately emits all its values to the ReplaySubject class. The last
three values are always stored in an array and when we later subscribe with
the DebugSubject class, it'll immediately receive all three of them:

// replaySubject_01.php

use Rx\Subject\ReplaySubject;

$subject = new ReplaySubject(3);

Observable::range(1, 8)

 ->subscribe($subject);

$subject->subscribe(new DebugSubject());

The output consists of the last three values that the ReplaySubject class
received:

$ php replaySubject_01.php

15:46:30 [] onNext: 6 (integer)

15:46:30 [] onNext: 7 (integer)

15:46:30 [] onNext: 8 (integer)

15:46:30 [] onCompleted

Notice, that we also received the complete signal, which is correct because it
was emitted by RangeObservable.

AsyncSubject
The last Subject type RxPHP offers out of the box is called AsyncSubject,
which might seem a little confusing. The only thing this Subject does is that it
emits only the last value it received before receiving the complete signal.

We'll demonstrate this Subject on a similar example to the previous one.
We'll just switch the order of actions and we'll subscribe the DebugSubject
class before subscribing to the source Observable to see that it silently
suppresses all values except the last one:

// asyncSubject_01.php

use Rx\Subject\AsyncSubject;

$subject = new AsyncSubject();

$subject->subscribe(new DebugSubject());

Observable::range(1, 8)

 ->subscribe($subject);

The output is only the last value emitted by the source RangeObservable:

$ php asyncSubject_01.php

16:00:46 [] onNext: 8 (integer)

16:00:46 [] onCompleted

Now we know everything we need to start working with multicasting and the
multicast() operator in particular.

Multicasting in RxPHP
In Reactive Extensions, multicasting means sharing a single subscription
among multiple observers via an instance of a Subject class. All multicasting
operators are internally based on the general multicast() operator that
implements their most common functionality. Of course, we're not limited to
only using the Subject class and we'll use ReplaySubject and
BehaviorSubject as well.

Multicasting is common to all Rx implementations, so knowledge of how it
works inside is generally useful.

The multicast() operator and
ConnectableObservable
The multicast() operator returns ConnectableObservable or
MulticastObservable based on what arguments we pass. We'll first have a
look at how it works with ConnectableObservable, because this should be
very familiar to us.

A typical use case could look like the following example:

// multicast_01.php

$observable = Rx\Observable::defer(function() {

 printf("Observable::defer\n");

 return Observable::range(1, 3);

 })

 ->multicast(new Subject());

$observable->subscribe(new DebugSubject('1'));

$observable->subscribe(new DebugSubject('2'));

$observable->connect();

Instead of instantiating ConnectableObservable, we used the multicast()
operator to do it for us.

In this example, we created a single source Observable and subscribed two
observers to it. Then, after calling connect(), the ConnectableObservable
class subscribed to an instance of AnonymousObservable returned from the
Observable::defer static method.

As we can see, the multicast() operator returns an instance of
ConnectableObservable. The result from this example is as follows:

$ php multicast_01.php

Observable::defer

10:43:42 [1] onNext: 1 (integer)

10:43:42 [2] onNext: 1 (integer)

10:43:42 [1] onNext: 2 (integer)

10:43:42 [2] onNext: 2 (integer)

18:12:16 [1] onNext: 3 (integer)

18:12:16 [2] onNext: 3 (integer)

10:43:42 [1] onCompleted

10:43:42 [2] onCompleted

All observers subscribe to the same instance of the Subject that we passed.
This is an important implication that we need to be aware of.

In a moment, we'll have a look at a slightly modified version of this example
that passes different arguments to multicast().

MulticastObservable
Another Observable used for multicasting is called MulticastObservable. Its
usage is similar to ConnectableObservable, but its internal functionality is
very different. Consider the following example:

// multicastObservable_01.php

$source = Rx\Observable::defer(function() {

 printf("Observable::defer\n");

 return Observable::range(1, 3);

});

$observable = new MulticastObservable($source, function() {

 return new Subject();

}, function (ConnectableObservable $connectable) {

 return $connectable->startWith('start');

});

$observable->subscribe(new DebugSubject('1'));

$observable->subscribe(new DebugSubject('2'));

When subscribing to MulticastObservable, it internally calls the
multicast() operator on the source Observable (which returns
ConnectableObservable, as we saw in the previous example) and runs the
first callable to create an instance of the Subject class. This is the first major
difference to using just multicast(), where we always shared the same
instance of the Subject class. The MulticastObservable, in contrast, creates
a new Subject for every subscriber.

So internally, we have an instance of ConnectableObservable. Then it calls
the second callable with this ConnectableObservable passed as an argument,
which means we can further chain operators to it, or we could even use a
completely different Observable (just remember this method has to return an
Observable because the operator will internally subscribe to it).

This callable is often called the selector function because it lets us select
where we want to subscribe. After that, MulticastObservable subscribes to
the Observable returned and calls the connect() method on the

ConnectableObservable.

In our example, we create a new instance of the Subject class for every
subscriber and then chain startWith() with the ConnectableObservable,
which makes it emit a single value before emitting values from the source.

The output will look like the following:

$ php multicastObservable_01.php

12:54:20 [1] onNext: start (string)

Observable::defer

12:54:20 [1] onNext: 1 (integer)

12:54:20 [1] onNext: 2 (integer)

12:54:20 [1] onNext: 3 (integer)

12:54:20 [1] onCompleted

12:54:20 [2] onNext: start (string)

Observable::defer

12:54:20 [2] onNext: 1 (integer)

12:54:20 [2] onNext: 2 (integer)

12:54:20 [2] onNext: 3 (integer)

12:54:20 [2] onCompleted

Note that the deferred Observable was called twice, which is correct. Each
observer has its own instances of the Subject and ConnectableObservable.
We have full control of what Subjects we're using for multicasting instead of
leaving it to the default multicast() behavior.

The question is, why does it matter whether we're using the same instance of
the Subject or not?

Subjects and their internal state

We know how to use Subjects. We also know what the next, complete, and
error signals do. So what happens if we use a single Subject and subscribe
to a cold Observable multiple times? Consider the following example:

// subject_01.php

$subject = new Subject();

$subject->subscribe(new DebugSubject('1'));

$subject->onNext(1);

$subject->onNext(2);

$subject->onNext(3);

$subject->onCompleted();

$subject->subscribe(new DebugSubject('2'));

$subject->onNext(4);

$subject->onCompleted();

We'll run this example and talk about what happens inside the Subject
instance. Note that we subscribed to the Subject twice where the first
observer (represented by DebugSubject) receives the first three values and
then emits the complete signal.

However, what happens with the second observer?

$ php subject_01.php

13:15:00 [1] onNext: 1 (integer)

13:15:00 [1] onNext: 2 (integer)

13:15:00 [1] onNext: 3 (integer)

13:15:00 [1] onCompleted

13:15:00 [2] onCompleted

The second observer received just the complete signal, and none of the
observers received the value 4.

It's very important to understand what happens internally inside a Subject
class when it receives a complete signal (this means it receives a complete
signal or we call the onCompleted() method manually):

1. The Subject class checks whether it's already been marked as stopped.
If it has, then the method returns immediately. If it's not stopped, then it
marks itself as stopped.

2. The complete signals are then sent to all observers.
3. The array of observers is emptied.

So now it should make sense. The first three values were emitted as usual.
Then we called onComplete(), which did exactly what we described in these
bullet points. At this point, this Subject instance has no observers (see step
4). Then we subscribe with another observer, which is added to the array of

observers. This observer immediately receives a complete signal because the
Subject is already stopped and didn't end with an error.

At this point, calling onNext(4) does nothing because the Subject instance is
already stopped (see step 1).

This principle might be a problem in situations where we purposely want to
defer creating Observables with, for example, the Observable::defer static
method that will be called multiple times. Once it sends the complete signal,
all consecutive values will be ignored by the Subject instance for the reasons
we explained. We'll have another example featuring this issue later in this
chapter.

This is a very important principle we need to be aware of when using
multicast() operators and the ConnectableObservable.

Whether this applies to MulticastObservable is up to us, depending on what
we return from its first callable. We can use the same instance of Subject or
we can create a new one depending on what we want to achieve.

Note

If this all looks confusing, just remember that Subjects have an internal state.
When they receive complete or error notification, they'll never re-emit any
value further.

The multicast() operator and
MulticastObservable
So let's go back to the multicast() operator and see how
MulticastObservable is related to all this. We said that multicast() returns
ConnectableObservable or MulticastObservable depending on the
arguments we use. This is true when we use the second argument to
multicast().

Consider the following example, where we also pass a selector function to the
multicast() operator:

// multicast_02.php

use Rx\Observable;

use Rx\Subject\Subject;

$subject = new Subject();

$source = Observable::range(1, 3)

 ->multicast($subject, function($connectable) {

 return $connectable->concat(Observable::just('start'));

 })

 ->concat(Observable::just('concat'));

$source->subscribe(new DebugSubject());

$source->subscribe(new DebugSubject());

If we use the second argument to multicast(), it wraps the $subject
variable with a callable before it's passed to MulticastObservable. In fact,
multicast() is internally implemented as the following:

function multicast($subject, $selector=null, $scheduler=null){

 return $selector ?

 new MulticastObservable($this, function () use ($subject) {

 return $subject;

 }, $selector) :

 new ConnectableObservable($this, $subject, $scheduler);

}

This always guarantees that we're using the same Subject. The only thing

that decides which Observable we'll receive is whether we use the selector
function or not. The preceding example also adds the startWith() and
concat() operators to see what effect this selector function can have.

The output for this example is affected by the issue we showed earlier:

$ php multicast_02.php

13:41:23 [] onNext: start (string)

13:41:23 [] onNext: 1 (integer)

13:41:23 [] onNext: 2 (integer)

13:41:23 [] onNext: 3 (integer)

13:41:23 [] onNext: concat (string)

13:41:23 [] onCompleted

13:41:23 [] onNext: start (string)

13:41:23 [] onNext: concat (string)

13:41:23 [] onCompleted

The second subscriber hasn't received any value, even though we subscribed
twice to the source Observable.

Comparing ConnectableObservable and MulticastObservable

To be extra clear about the difference between these two use cases and
ConnectableObservable and MulticastObservable, let's have a look at
these two diagrams:

Diagram representing a ConnectableObservable with two observers

In this diagram, we have a single ConnectableObservable that internally
contains one Subject. Both observers are subscribed to the same Subject.

On the other hand, with MulticastObservable we'll get the following
structure:

Diagram representing a MulticastObservable with two observers

The two ConnectableObservables inside the grey boxes mean we have no
control over them (these are created automatically by the internal
multicast() call, as mentioned earlier).

As we can see from the examples, with MulticastObservable created via the
multicast() call, we won't be able to achieve the same result as we see in
this image because multicast() always forces us to use a single Subject
instance. Of course, we could always create an instance of
MulticastObservable ourselves, as we saw earlier in this chapter, but there's
also an operator for this purpose that we can use.

The multicastWithSelector() operator
To simplify creating instances of MulticastObservable, we have the
multicastWithSelector() operator, which takes two callables as arguments
that have the same purpose as calling MulticastObservable itself.

Consider the following example:

// multicastWithSelector_01.php

$source = Observable::range(1, 3)

 ->multicastWithSelector(function() {

 return new Subject();

 }, function(ConnectableObservable $connectable) {

 return $connectable->concat(Observable::just('concat'));

 });

$source->subscribe(new DebugSubject());

$source->subscribe(new DebugSubject());

This example illustrates the diagram we saw previously. We have two
observers where each has its own instance of Subject. We also made use of
the selector function that appends a concat string at the end of the chain.

The output is then easily predictable:

$ php multicastWithSelector_01.php

15:05:56 [] onNext: 1 (integer)

15:05:56 [] onNext: 2 (integer)

15:05:56 [] onNext: 3 (integer)

15:05:56 [] onNext: concat (string)

15:05:56 [] onCompleted

15:05:56 [] onNext: 1 (integer)

15:05:56 [] onNext: 2 (integer)

15:05:56 [] onNext: 3 (integer)

15:05:56 [] onNext: concat (string)

15:05:56 [] onCompleted

This was an introduction to multicasting in Rx and the multicast() operator
in RxPHP. Since there're a few other operators based on multicast(), we'll
talk about them now when we know how multicast() behaves internally.

The publish*() and share*() operator
groups
There're multiple other operators internally using the multicast() operator,
and we can split them into two basic groups:

publish*(): Operators starting with the word "publish" wrap the
multicast() operator and call it with one of the Subject classes. All
publish* variants accept an optional argument, which is the selector
function that we talked about earlier. Therefore, all of them can return
ConnectableObservable or MulticastObservable just like
multicast().
share*(): Operators starting with the word "share" internally use the
same publish* equivalent and chain it with the refCount() operator.
All share* operators don't allow any selector function.

To understand the difference between the two groups, we need to first
understand what the refCount() operator is.

The refCount() operator

We already know this very basic usage of ConnectableObservable. Let's
consider the following example, and first see how we can call the connect()
method manually and then switch to the refCount() operator:

// refCount_01.php

$source = Observable::create(function($observer) {

 $observer->onNext(1);

 $observer->onNext(2);

 $observer->onNext(3);

});

$conn = new Observable\ConnectableObservable($source);

$conn->subscribe(new DebugSubject('1'));

$conn->subscribe(new DebugSubject('2'));

$conn->connect();

This is simple. We have two observers subscribed to the
ConnectableObservable waiting to call connect(), which subscribes to the

source Observable (in this case AnonymousObservable with a custom
subscribe function) and emits all values to both observers at the same time.

Note that we're purposely not using RangeObservable because we don't want
to emit the complete signal:

$ php refCount_01.php

17:20:41 [1] onNext: 1 (integer)

17:20:41 [2] onNext: 1 (integer)

17:20:41 [1] onNext: 2 (integer)

17:20:41 [2] onNext: 2 (integer)

17:20:41 [1] onNext: 3 (integer)

17:20:41 [2] onNext: 3 (integer)

This is pretty simple, but we had to call connect() ourselves, which is
sometimes alright. However, other times we can leave this logic to the
refCount() operator.

Well, actually it's not an operator (it's not lifted to an Observable chain with
the lift() method). It's just a method on ConnectableObservable that
returns an instance of RefCountObservable.

This Observable internally subscribes and unsubscribes to the source
Observable. When the first observer subscribes, it also calls connect() on the
ConnectableObservable. Then when another observer subscribes, it does
nothing because we've already subscribed. When unsubscribing, the
procedure is exactly the opposite. If even the last observer unsubscribes, then
RefCountObservable also unsubscribes the ConnectableObservable.

This has some interesting consequences. We can use refCount() to
automatically subscribe when there's at least one observer, as we can see in
this example:

// refCount_02.php

$source = Rx\Observable::create(function($observer) {

 $observer->onNext(1);

 $observer->onNext(2);

 $observer->onNext(3);

});

$conn = (new Rx\Observable\ConnectableObservable($source))

 ->refCount();

$conn->subscribe(new DebugSubject('1'));

$conn->subscribe(new DebugSubject('2'));

We have two observers again, but this time we're not calling connect() by
ourselves. Instead, we're using refCount() to call the connect() method for
us. Since we're sharing the same subscription to the source, only the first
observer will receive values. The second observer doesn't cause another
subscription to the source (as we can see from the preceding explanation):

$ php refCount_02.php

17:52:05 [1] onNext: 1 (integer)

17:52:05 [1] onNext: 2 (integer)

17:52:05 [1] onNext: 3 (integer)

However, if we unsubscribe after receiving values for the first observer
(which causes unsubscription from ConnectableObservable inside
RefCountObservable) and then subscribe again with the second observer, it'll
make the source emit all its values because we have subscribed to it again:

// refCount_03.php

// ...

$sub = $conn->subscribe(new DebugSubject('1'));

$sub->dispose();

$conn->subscribe(new DebugSubject('2'));

When we called dispose(), we made RefCountObservable unsubscribe from
its source because there are no more observers.

This example prints all values twice:

$ php refCount_03.php

17:53:29 [1] onNext: 1 (integer)

17:53:29 [1] onNext: 2 (integer)

17:53:29 [1] onNext: 3 (integer)

17:53:29 [2] onNext: 1 (integer)

17:53:29 [2] onNext: 2 (integer)

17:53:29 [2] onNext: 3 (integer)

Of course, we need to be sure we don't stop the inner Subject in
ConnectableObservable as we talked about before. The
ConnectableObservable class uses a single instance of Subject, so if it
received a complete signal, then no unsubscription or subscription would
change this.

The publish() and share() operators
Now we know what the multicast() and refCount() operators do, we can
finally understand what publish() and share() do.

Using publish() is just a shortcut to calling multicast() with the Subject
instance as a parameter. If we rewrote the very first example on the
multicast() operator, it would look almost the same:

// publish_01.php

use Rx\Observable;

$observable = Observable::defer(function() {

 printf("Observable::defer\n");

 return Observable::range(1, 3);

 })

 ->publish();

$observable->subscribe(new DebugSubject('1'));

$observable->subscribe(new DebugSubject('2'));

$observable->connect();

The output for this demo is exactly the same as for multicast_01.php, so we
don't need to reprint it here.

The share() Operator uses the publish()->refCount() chain internally, so
we don't need to call connect() any more. However, the output is not the
same.

The RangeObservable sent the complete signal, which marked the internal
Subject in ConnectableObservable as stopped, so the second observer won't
receive anything except the complete signal that is emitted by the Subject
class right at the point of subscription (it's not emitted by the source
Observable):

// share_01.php

use Rx\Observable;

$observable = Observable::defer(function() {

 printf("Observable::defer\n");

 return Observable::range(1, 3);

 })

 ->share();

$observable->subscribe(new DebugSubject('1'));

$observable->subscribe(new DebugSubject('2'));

From the output, we can see that the source Observable is really created just
once:

$ php share_01.php

Observable::defer

18:17:12 [1] onNext: 1 (integer)

18:17:12 [1] onNext: 2 (integer)

18:17:12 [1] onNext: 3 (integer)

18:17:12 [1] onCompleted

18:17:12 [2] onCompleted

These two basic operators have many variants, but are based on the same
principle.

The publishValue() and shareValue()
operators
These operators are based on BehaviorSubject instead of just Subject. The
principle is then exactly the same. The publishValue() operator calls
multicast() with an instance of BehaviorSubject. Then the shareValue()
operator calls publishValue()->refCount().

Using BehaviorSubject allows us to set the default value that is emitted to
all observers when they subscribe.

We can test this operator on the same example as before:

// publishValue_01.php

$source = Observable::defer(function() {

 printf("Observable::defer\n");

 return Observable::range(1, 3);

 })

 ->publishValue('default');

$source->subscribe(new DebugSubject());

$source->subscribe(new DebugSubject());

$source->connect();

The output always starts with the default string because it's emitted by
BehaviorSubject as the first value:

$ php publishValue_01.php

18:47:17 [] onNext: default (string)

18:47:17 [] onNext: default (string)

Observable::defer

18:47:17 [] onNext: 1 (integer)

18:47:17 [] onNext: 1 (integer)

18:47:17 [] onNext: 2 (integer)

18:47:17 [] onNext: 2 (integer)

18:47:17 [] onNext: 3 (integer)

18:47:17 [] onNext: 3 (integer)

18:47:17 [] onCompleted

18:47:17 [] onCompleted

Using shareValue() is the same as using share(), so we don't need to
include it here.

The replay(), shareReplay(), and
publishLast() operators
All these share exactly the same principle as the previous two operators, just
based on ReplaySubject (replay() and shareReplay()) or AsyncSubject
(the publishLast() operator).

We don't need to include examples for those operators here because there
would be nothing new for us to see.

PHP pthreads extension
Since the year 2000, PHP can be compiled as thread safe, which allows any
process to run multiple instances of the PHP interpreter in multiple threads
(one thread per PHP interpreter). Each PHP interpreter has its own isolated
context which doesn't share any data (the "share nothing" philosophy) with
others.

This is commonly used in web servers such as Apache (depending on its
modules). Apache creates multiple subprocesses where each subprocess runs
multiple threads with multiple PHP interpreters. Running interpreters in
threads instead of subprocesses has its advantages and disadvantages.

Creating only threads is significantly faster and doesn't consume as much
memory as creating subprocesses.

An obvious disadvantage is isolation. Even though all PHP interpreters run
independently in threads, if any of them causes, for example, a "segmentation
fault" error, then the entire process and all of its threads are terminated
immediately. This even includes threads that didn't cause any error and that
might be processing an HTTP request from another client at that moment.

This so-called Server API (SAPI) isn't very helpful to us. We need to be able
to run our own pieces of code in threads ("user land multithreading"). The
PHP extension pthreads is an object-oriented API that does exactly this. It
takes our code and creates a new PHP interpreter, which then starts executing
it.

Note that the PHP pthreads are based on POSIX threads, which means that
when we create a thread using pthreads, we're creating a real thread and not
forking or creating subprocesses underneath.

In some languages, such as Python, there are threads that behave like they're
executing code in parallel, but in fact there's still just one single threaded
Python interpreter switching from one "thread" to another. So there's no real
parallelism.

However, PHP pthreads come with a cost, and it's important to understand at
least a little of what's going on inside.

Prerequisites
In this chapter, we'll use the new pthreads v3, which means we need to use
PHP7+. There's also the older pthreads v2, which is designed for PHP5.
Since there are major differences in the internal implementations with these
two versions, we'll stick only to the new one.

As we said earlier, in order to use the pthreads extension, PHP has to be
compiled with the Thread Safety option enabled. This needs to be enabled
when compiling PHP and can't be enabled later (if you're only downloading
the PHP executable, make sure you're downloading the correct one, usually
marked as ZTS).

A universal way to install pthreads is with the PECL tool, which should
work on all platforms:

$ pecl install pthreads

Alternatively, if you're running OS X, you can use a homebrew tool that also
enables it in PHP config files for you:

$ brew install php70-pthreads

Note

The current pthreads v3 can be enabled only when running PHP code in a
standalone script. This means pthreads can't be part of any PHP application
ran using for example php-fpm. In other words, we can use pthreads only in
console applications and not it web applications.

Introduction to multithreading with
pthreads in PHP7
The most basic example of pthreads in PHP can simply be the spawning of
multiple threads and printing their results. We'll make random pauses with
sleep() functions to simulate multiple long running tasks. Remember that in
PHP the sleep() function is always blocking (it blocks the interpreter
execution for a certain number of seconds):

// threads_01.php

class MyThread extends Thread {

 protected $i;

 public function __construct($i) {

 $this->i = $i;

 }

 public function run() {

 sleep(rand(1, 5));

 printf("%d: done\n", $this->i);

 }

}

$threads = [];

foreach (range(0, 5) as $i) {

 $thread = new MyThread($i);

 $thread->start();

 $threads[] = $thread;

}

foreach ($threads as $thread) {

 $thread->join();

}

echo "All done\n";

A task is represented by a class extending the base Thread class and
implementing its run() method. This run() method contains code that'll be
run in a separate thread when we call start(). Note that we need to
implement the run() method and not the start() method. The start()
method is an internal method written in C that calls run() for us.

After we create and start each thread, we use the join() method, which

blocks the current interpreter and waits until that particular thread finishes. If
it's already finished, then it'll continue. By looping over all threads and
calling join(), we effectively wait until all of them finish.

When we run this example, we'll get the following result (you'll get a
different order since we're using random sleep intervals):

$ php threads_01.php

0: done

2: done

1: done

5: done

3: done

4: done

All done

We won't go into much depth when using the pthreads extension in this
chapter. There are primarily three reasons for this, as of April 2017:

Documentation on pthreads is very insufficient: Documentation on
most of the classes and methods in pthreads contains very little
information. There's at most one sentence, usually without any example,
so it's mostly up to the developer to guess what it does.
Documentation, examples, and other sources of information are
often obsolete: The new pthreads v3 works only with PHP7. However,
the official documentation at
http://php.net/manual/en/book.pthreads.php covers only pthreads v2. In
the meantime, pthreads internals have changed, so you might be
surprised that some examples won't work at all. For example, the Mutex
and Cond classes don't exist at all now.
Documentation is non-existent: The new classes coming with pthreads
v3 aren't documented at all. The official homepage
https://github.com/krakjoe/pthreads mentions differences between the
two versions, but doesn't contain any information on how to effectively
use them. For example, the PHP documentation found at
http://php.net/manual/en/book.pthreads.php doesn't mention the
Volatile class at all.

http://php.net/manual/en/book.pthreads.php
https://github.com/krakjoe/pthreads
http://php.net/manual/en/book.pthreads.php

This all means that using pthreads is a pain at this moment, and getting any
relevant information is hard.

There are also caveats regarding having multiple PHP contexts that need to
share data while staying completely isolated. Since we need to be aware of
these issues, it's worth spending some time explaining what this means for us.

Getting/setting data from/to threads
In PHP, all objects are passed by reference by default. Consider the following
example, where we pass an instance of stdClass to another object, where we
modify it:

// references_01.php

$obj = new stdClass();

$obj->prop = 'foo';

$obj2 = $obj;

printf("%d\n", $obj === $obj2);

class TestClass {

 public $obj;

 public $objCopy;

 public function copyObj() {

 $this->objCopy = $this->obj;

 $this->objCopy->prop2 = 'bar';

 }

}

$testObj = new TestClass();

$testObj->obj = $obj;

$testObj->copyObj();

printf("%d\n", $obj === $testObj->objCopy);

print_r($obj);

We created an instance of stdClass called $obj. Then we reassigned it to
$obj2 and compared the two with an identity operator (three equal signs ===).
Then we pass the $obj to an instance of TestClass, where we do the same
and also add one more property to it called prop2.

The output from this example is what we might expect:

$ php7 references_01.php

1

1

stdClass Object (

 [prop] => foo

 [prop2] => bar

)

All the variables reference the same object. This is what we're used to and
what we're using in PHP all the time.

However, this can't work with pthreads. We're not allowed to share objects
(memory addresses) among different PHP contexts. These have to always be
isolated, which is the very basic premise for thread-safe execution. We can
test this with a very simple example, following on from the previous one:

// threads_02.php

class MyThread extends Thread {

 public $obj;

 public $objCopy;

 public function run() {

 $this->objCopy = $this->obj;

 $this->objCopy->prop2 = 'bar';

 printf("%d\n", $this->obj === $this->obj);

 }

}

$obj = new stdClass();

$obj->prop = 'foo';

$thread = new MyThread($obj);

$thread->obj = $obj;

$thread->start();

$thread->join();

printf("%d\n", $obj === $thread->objCopy);

print_r($obj);

In this example, we're using the identity operator to compare $this->obj
with another variable that should be referencing the same object.

Now let's see what happens when we run this example:

$ php threads_02.php

0

0

stdClass Object (

 [prop] => foo

)

All the comparisons return false. Even the most obvious one, $this->obj
=== $this->obj, returns false.

In pthreads, it has to work like this because PHP interpreters are isolated,
and thus all read and write operations from the parent and other contexts need
to be performed via copying data. However, there's an exception to this rule.
Classes coming from the pthreads extension (including all their descendants)
aren't copied, and are just referenced, as we'll see in a later example.

So in this example, we actually copied the object multiple times. Every call to
$this->obj made a copy to the current context, as well as to the last
$thread->objCopy statement.

The consequence of this principle is that we have to gather results from
threads manually; we can't just pass an object to its constructor that will be
populated with results by the thread itself.

A modified version of the first example would look like this:

// threads_08.php

class MyThread extends Thread {

 protected $i;

 public $result;

 public function __construct($i) {

 $this->i = $i;

 }

 public function run() {

 sleep(rand(1, 5));

 printf("%d: done\n", $this->i);

 $this->result = pow($this->i, 2);

 }

}

$threads = [];

foreach (range(5, 7) as $i) {

 $thread = new MyThread($i);

 $thread->start();

 $threads[] = $thread;

}

foreach ($threads as $i => $thread) {

 $thread->join();

 printf("%d: %d\n", $i, $thread->result);

}

echo "All done\n";

This is basically the same demo as before; we're just storing results for each
thread in a public property that we can later read after calling join().

The output for this example is as follows:

$ php threads_08.php

7: done

5: done

6: done

0: 25

1: 36

2: 49

All done

Although creating threads is simple, if we had multiple threads it'd be hard to
keep track of which threads are running and which are already finished. In
real-world applications, it's usually not required to spawn many threads to be
executed just once. Creating so many threads is inefficient and, most
importantly, unnecessary.

Using Thread, Worker, and Pool classes
The Thread class represents a single interpreter context and a single task.
When we want to run the same task multiple times, we need to create
multiple instances of the same class and then join all the results (to wait until
they're done).

There's also the Worker class. Similar to the Thread class, it represents a
single interpreter context, but instead of doing a single job, it can stack jobs
and execute them one after another.

We can take the previous MyThread class and this time we'll execute all tasks
on a single Worker:

// threads_03.php

class MyThread extends Thread {

 protected $i;

 public $result;

 public function __construct($i) {

 $this->i = $i;

 }

 public function run() {

 sleep(rand(1, 5));

 printf("%d: done\n", $this->i);

 $this->result = pow($this->i, 2);

 }

}

$worker = new Worker();

$threads = [];

foreach (range(1, 4) as $i) {

 $thread = new MyThread($i);

 $worker->stack($thread);

 $threads[] = $thread;

}

$worker->start();

echo "Starting worker\n";

// Add another task after the worker has started

$thread = new MyThread(42);

$worker->stack($thread);

$threads[] = $thread;

$worker->shutdown();

foreach ($threads as $i => $thread) {

 printf("%d: %d\n", $i, $thread->result);

}

echo "All done\n";

Since we have a single interpreter context, all tasks will be executed one after
another. With the call to shutdown(), we make the Worker class wait until all
stacked tasks are done. We can also add tasks to the worker after it's started
the execution:

$ php7 threads_03.php

Starting worker

5: done

6: done

7: done

42: done

0: 25

1: 36

2: 49

3: 1764

All done

Note that tasks are run one after another and not in parallel.

We used the default Worker class provided by pthreads, but we can make
our own class extending from Worker as well. For example, consider the
following class:

class MyWorker extends Worker {

 public function run() {

 // ... Initialize this Worker and its context.

 }

}

This class extends the run() method just like the Thread class. The Worker

class's run() method, however, is called only once when initializing the PHP
interpreter context, and allows us to set up the Worker class.

We can, of course, create multiple Worker instances and stack tasks on them,
but handling which workers are available and which workers are busy would
be tedious.

For this reason, pthreads have the Pool class. It can contain a number of
workers and distribute tasks among them. We don't need to worry about
selecting the correct worker, and can leave everything to the Pool class.

Now let's consider the following example, where we'll use a Pool of three
Worker classes to perform six tasks in total:

// threads_04.php

class MyWorker extends Worker {

 public function run() {

 printf("%s: starting worker\n", date('H:i:s'));

 }

}

class Task extends Threaded {

 public function run() {

 sleep(3);

 printf("%s: done\n", date('H:i:s'));

 }

}

printf("%s: start\n", date('H:i:s'));

$pool = new Pool(3, MyWorker::class);

foreach (range(0, 5) as $i) {

 $pool->submit(new Task());

}

$pool->shutdown();

echo "All done\n";

Each Task instance makes a three-second-long sleep. Since we're using three
Worker classes, we can run three tasks at the same time, so running this demo
should take exactly six seconds. Just as we did with the Worker class, we call
shutdown(), which waits until all the tasks are processed and then shuts

down all the workers. This is like calling join() on each task.

The Pool class takes three arguments: the number of workers to run
simultaneously, the Worker class name that it'll instantiate (we can obviously
use the default Worker::class as well), and an array of parameters passed to
the Worker class's constructor.

The output from this example is as follows:

$ php threads_04.php

22:50:51: start

22:50:51: starting worker

22:50:51: starting worker

22:50:51: starting worker

22:50:54: done

22:50:54: done

22:50:54: done

22:50:57: done

22:50:57: done

22:50:57: done

All done

The main difference from the developer's perspective is that we're scheduling
six tasks to be executed on three threads. In our very first example of
pthreads, we executed six tasks as well, but on six threads.

The general rule of thumb is to use as few threads as we need. Creating
threads requires some resource allocations (mostly creating a new PHP
interpreter), and with tasks that actually do some heavy computing, the code
will reach a point where the creation of additional threads will no longer
produce any performance benefit. It's very effective to run in parallel tasks
that spend most of their time waiting, such as system calls, or downloading
data via HTTP. We can create many threads for these tasks, and they will all
run in parallel and won't require practically any CPU time.

On the other hand, if we had tasks that do require CPU time, then at some
point adding more threads won't have any effect because there will be no
more CPUs/cores to run the interpreters, so it'll need to switch from one
execution context to another. All the threads will run in parallel, but it'll take

a long time to finish all of them. Whether it's worth it or not depends on what
we want to achieve, but usually it's better to use a lower number of threads
and execute tasks in smaller chunks.

Note

A good number of threads for computationally intensive tasks is usually
calculated as (number of CPUs) * (number of cores per CPU).

So this is why we might want to use the Pool class. Also, an important aspect
we haven't seen in the previous example is how we can grab results from the
finished tasks.

Retrieving results from thread pools

The easiest way to get processed data from threads is by keeping their
references and then iterating them to get results. The most obvious example
could look like the following:

// threads_12.php

class MyThread extends Thread {

 protected $i;

 public $result;

 public function __construct($i) {

 $this->i = $i;

 }

 public function run() {

 $this->result = pow($this->i, 2);

 }

}

$pool = new Pool(3);

$threads = [];

foreach (range(1, 7) as $i) {

 $thread = new MyThread($i);

 $pool->submit($thread);

 $threads[] = $thread;

}

$pool->shutdown();

$results = [];

foreach ($threads as $thread) {

 $results[] = $thread->result;

}

print_r($results);

This is very simple and works as expected. However, it's not very practical.
We used the shutdown() method to wait for all scheduled tasks to finish and
then collected all the results from all threads. This would get more
complicated if we didn't want to wait until all threads have finished and
wanted to collect results as they're ready. We'd have to go back to something
like an event loop that periodically checks all threads for their results.

Of course this is doable, but pthreads proposes another and more elegant way
of doing this.

For this reason, the Pool class has a method called collect(). This method
takes as an argument a callable that is called on every thread. This callable
has to decide whether the thread has already finished or not. If it is finished,
we can grab its result right inside the callable and return true, which means
this thread can be disposed.

Unfortunately, there's one large BUT. In the current pthreads v3, the behavior
of Pool::collect() has most likely changed. In most examples, you'll see
the collect() method being used as follows:

// threads_10.php

$pool = new Pool(3);

while (@$i++ < 6) {

 $pool->submit(new class($i) extends Thread {

 public $id;

 private $garbage;

 public function __construct($id) {

 $this->id = $id;

 }

 public function run() {

 sleep(1);

 printf("Hello World from %d\n", $this->id);

 $this->setGarbage();

 }

 public function setGarbage() {

 $this->garbage = true;

 }

 public function isGarbage(): bool {

 return $this->garbage;

 }

 });

}

while ($pool->collect(function(Collectable $work){

 printf("Collecting %d\n", $work->id);

 return $work->isGarbage();

})) continue;

$pool->shutdown();

This example is using an anonymous class (a PHP7 feature) to extend Thread
to represent a single task.

Although this example seems simple and is used in many resources
(including the stackoverflow.com answers by the author of pthreads), it
doesn't collect all the results. We wanted to include this example here to
show how it should work and most likely will work in the updated version of
pthread.

The output of PHP7 and pthreads v3 looks like the following (you'll probably
get these lines in a different order):

$ php threads_10.php

Hello World from 1

Collecting 1

Hello World from 2

Collecting 2

Hello World from 3

Collecting 3

Hello World from 4

Hello World from 5

Hello World from 6

As you can see, the last three threads weren't collected at all.

There are a couple of possible reasons why this doesn't work:

http://stackoverflow.com

With prior versions of pthreads, we had to extend the Collectable class
instead of the Thread class. The Collectable class used to be a class
originally, but this has changed, and it's now an interface. This change is
documented on the pthreads readme page (
https://github.com/krakjoe/pthreads#php7). Now, the Thread class
implements Collectable automatically. In most resources, you'll find
Collectable used as a class.
The official documentation on Pool::collect() is insufficient. It
doesn't mention at all that the callables need to return Boolean
determining whether the thread should be disposed. Also, the
documentation is for the older pthreads v2 where the collect()
method is said to return void. This is not (or maybe never was) true
since it's always used in a while loop (see
http://stackoverflow.com/questions/28416842/how-does-poolcollect-
works or https://gist.github.com/krakjoe/9384409).
Changes to Pool::collect() are mentioned in the official readme at
https://github.com/krakjoe/pthreads#php7 . Quote: "The Pool::collect
mechanism was moved from Pool to Worker for a more robust Worker
and simpler Pool inheritance." What this means remains a mystery.
In some examples, you'll see developers extending the Pool class and
looping with while (count($this->work)). This was probably meant
to loop while there is work scheduled. In pthreads v3, the work property
doesn't exist on the Pool class. The official readme page listing the
breaking changes we mentioned already has no record of this change.

So our biggest problem is the lack of any reliable information.

It looks desperate, but there is, in fact, a sane way of collecting all the results.
We'll make use of yet another undocumented class called Volatile and pass
it to all our threads. As we said earlier when talking about sharing data
between interpreter contexts, all data needs to be copied. In contrast, classes
coming from the pthreads extension (and all classes extending them) are
referenced directly, and we're going to use this to our advantage.

Let's have a look at this example using the Volatile class to collect the

https://github.com/krakjoe/pthreads#php7
http://stackoverflow.com/questions/28416842/how-does-poolcollect-works
https://gist.github.com/krakjoe/9384409
https://github.com/krakjoe/pthreads#php7

results from the threads:

// threads_05.php

class Task extends Thread {

 public $result;

 private $i;

 public function __construct($i, Volatile $results) {

 $this->i = $i;

 $this->results = $results;

 }

 public function run() {

 sleep(1);

 $result = pow($this->i, 2);

 printf("%s: done %d\n", date('H:i:s'), $result);

 $this->results->synchronized(function($results,$result){

 $results[] = (array)['id' => $this->i,'result' => $result];

 $results->notify();

 }, $this->results, $result);

 }

}

$pool = new Pool(2);

$results = new Volatile();

foreach (range(0, 3) as $i) {

 $pool->submit(new Task($i, $results));

}

$results->synchronized(function() use ($results) {

 while (count($results) != 4) {

 $results->wait();

 }

});

while ($pool->collect()) continue;

$pool->shutdown();

print_r($results);

echo "All done\n";

The first part looks very familiar. We created a class extending the Thread
class, and then an instance of Pool where we'll schedule four tasks. Each task
in its constructor takes the same instance of Volatile. That's the object
where we'll append results for all our threads.

With the Volatile class, we're also using three new methods that are useful
only when executing multithreaded code where we need some sort of
synchronization between threads:

synchronized(): This method runs the callable while holding the access
lock for this object. We need to use this method in our example to be
sure that only one thread is able to append results at a time. Note that the
pthreads are using POSIX threads underneath, so the operator [] is not
an atomic operation at all. If we didn't use locks, then multiple threads
might try to modify the resulting array, which would lead to completely
unpredictable behavior.
wait(): This method makes the current interpreter context wait until
notify() is called on the same object (it's a blocking operation). Note
that calling wait() will release the access lock while it is waiting, and
then it'll be reacquired after awakening with notify(). Therefore, this
method needs to be called inside synchronized().
notify(): This method wakes the waiting interpreter context after
calling the wait() method.

Using wait() and notify() might be very dangerous if used inappropriately.
If the thread containing notify() called this method before the first thread
arrived at wait(), then the first context would be stuck at wait() forever
because there'd be no other notify() call to awaken it.

So we run wait() calls in a loop because we know that only one thread can
acquire the lock, and therefore each thread will append to $results one after
the other.

All threads will share the same reference to Volatile because, as we said, it's
a class from the pthreads extension (or its derivate extending the Threaded
class), so it won't be copied on read/write attempts.

When we run this example, we'll get the expected output:

$ php threads_05.php

17:21:42: done 0

17:21:42: done 1

17:21:43: done 9

17:21:43: done 4

Volatile Object (

 [0] => Array(

 [id] =>

 [result] => 0

)

 [1] => Array(

 [id] =>

 [result] => 1

)

 [2] => Array(

 [id] =>

 [result] => 9

)

 [3] => Array(

 [id] =>

 [result] => 4

)

)

All done

Note one last thing. When appending our results, we used the following line:

$results[] = (array)['id' => $this->i, 'result' => $result];

We're using typecasting with (array), which seems redundant. In fact, we
have to do this in order not to lose the reference to this array. When setting an
array to a property of the Thread class, it's automatically converted into a
Volatile object unless we typecast it beforehand to an array. Without
typecasting, the Volatile object representing the array would be deallocated
when this context is shut down, so we need to force typecast it to an array in
order to be copied.

There's actually one more solution to the problem described above with Pool
class not collection all results correctly (although this solution is not as
elegant as using synchronized() methods). Instead of using the collect()
method to control how long we want to run the while loop, we can manually
count the threads that have finished, in a similar way to the following
example:

// threads_13.php

$pool = new Pool(3);

// populate $pool with 6 tasks...

$remaining = 6;

while ($remaining !== 0) {

 $pool->collect(function(Collectable $work) use (&$remaining) {

 $done = $work->isGarbage();

 if ($done) {

 printf("Collecting %d\n", $work->id);

 $remaining--;

 }

 return $done;

 });

}

Now the responsibility to run the while loop as long as necessary lies on us
and not the collect() method (that might be bugged).

When we run this example with the same anonymous class instances as
shown previously, we'll correctly collect all the results.

$ php threads_13.php

Hello World from 1

Collecting 1

Hello World from 2

Collecting 2

Hello World from 3

Collecting 3

Hello World from 4

Hello World from 5

Hello World from 6

Collecting 6

Collecting 4

Collecting 5

RxPHP and pthreads
A good question is how is all this about pthreads related to RxPHP and to Rx
in general.

In PHP, we're typically not used to work with asynchronous tasks and if we
do, the implementation details are well hidden from us. This is for example
the case with event loops and RxPHP, where we don't need to care what's
going on inside RxPHP classes under the hood.

In the next chapter, we'd like to achieve the same state where we'll have a
general purpose Observable or an operator that runs tasks in parallel using
pthreads. Since working with asynchronous code in RxPHP is easy, pthreads
is a perfect candidate that could add very interesting functionality which can
be easily reused anywhere.

Summary
In this chapter, we went through two larger topics. We'll use both of them in
the next chapter, where we'll write multithreaded applications with pthreads,
as well as distributed applications with Gearman.

The two topics we covered were multicasting in RxPHP and all operators
related to it, and using the PHP7 pthreads v3 extension to write multithreaded
PHP7 applications.

Multicasting in Rx is very useful in order to share a single connection to
source Observables without resubscribing. This comes with the refCount()
operator to work more easily with ConnectableObservables.

Multithreaded programming in PHP is possible with the pthreads extension.
However, it's not as simple as it seems, and there are multiple caveats, most
importantly insufficient documentation and an overall unintuitive approach.
In the next chapter, we'll use just the most basic functions from pthreads to
avoid confusion and eventual inconsistency with future updates of pthreads.
The goal for the next chapter is to write an extendable code quality tool,
based on the nikic/php-parser project (https://github.com/nikic/PHP-
Parser), which will allow adding custom rules using RxPHP operator chains.
We'll base the application on what we've covered in this chapter.

https://github.com/nikic/PHP-Parser

Chapter 9. Multithreaded and
Distributed Computing with
pthreads and Gearman
We've spent quite some time with pthreads in the previous chapter. However,
we haven't seen them used in any practical applications. That's what we're
going to do in this chapter where we'll wrap pthreads with RxPHP to hide
their internal implementation details and to make thread pools easily reusable
in any RxPHP application.

Apart from pthreads, we'll take a look at distributing jobs across multiple
workers locally or on multiple machines. We'll use the Gearman framework
and its PHP bindings to make the same application as we'll do with pthreads,
just instead of running it in multiple threads we'll use multiple workers
(independent processes).

In this chapter, we're going to write an extendable code quality tool to test
various style checks in PHP scripts. For example, this can be not using
assignments in conditions, or just variable names following certain coding
standard. PHP projects tend to grow very large these days. If we wanted to
analyze every file in a single thread, it would take a very long time, so we
want to run the analyzer part in parallel if possible.

In particular, this chapter will cover the following topics:

Quick introduction to the PHP Parser library and how can we wrap its
parser with an RxPHP operator
Wrap pthreads Pool class with our custom operator that'll receive
Thread classes and run them in parallel automatically
Write a Thread class that'll run PHP Parser in a separate thread
Introduce the Gearman framework and write a very basic client and
worker in PHP. We'll also see how to run clients and workers using just
Gearman's CLI options
Distribute PHP Parser tasks across multiple Gearman workers

Compare single process multithreaded applications with a distributed
Gearman application

We'll go through the PHP Parser library very quickly because our main
interest is mostly in pthreads and the Gearman framework.

However, we'll spend some time writing the PHPParserOperator class, which
will combine many of the things we've learned in the previous chapters.

Introduction to the PHP Parser
library
PHP Parser is a library that takes a source code written in PHP, passes it
through a lexical analyzer, and creates its respective syntax tree. This is very
useful for static code analysis, where we want to check our own code not
only for syntactic errors but also for satisfying certain quality criteria.

In this chapter, we'll write an application that takes a directory, iterates all its
files and subdirectories recursively, and runs each PHP file through the PHP
Parser. We will check only for one specific pattern; that is enough for this
demo.

We want to be able to find any statement where we use the assignment inside
a condition. This could be any of the following examples (this time we're also
including line numbers for clarity):

// _test_source_code.php

1. <?php

2. $a = 5;

3. if ($a = 1) {

4. var_dump($a);

5. } elseif ($b = 2) {}

6. while ($c = 3) {}

7. for (; $d = 4;) {}

All this is of course a valid PHP syntax, but let's say we want to make our
code easy to understand. When your application is not behaving as you'd
expect and you don't know how you might spot any of the preceding
examples, then you would not be able to say at first sight whether this is
intentional or you're just missing one equals sign. Maybe you wanted to write
a condition such as if ($a == 1) and you just forgot one =.

This can be easily spotted and reported by the static code analyzer.

So, let's start by first trying the PHP Parser library itself and then wrap it with

the RxPHP operator.

Using the PHP Parser library
Before we start, we need to install the PHP Parser library. As usual, we'll use
the composer for this:

$ composer require nikic/php-parser

The easiest use case is just taking the source code we want to analyze and
process it with the parser:

// php_parser_01.php

use PhpParser\ParserFactory;

$syntax = ParserFactory::PREFER_PHP7;

$parser = (new ParserFactory())->create($syntax);

$code = file_get_contents('_test_source_code.php');

$stmts = $parser->parse($code);

print_r($stmts);

The output from this script is going to be a very long nested tree structure
representing the code we passed to the parser:

$ php php_parser_01.php

...

[2] => PhpParser\Node\Stmt\If_ Object

 (

 [cond] => PhpParser\Node\Expr\Assign Object (

 [var] => PhpParser\Node\Expr\Variable Object (

 [name] => a

 [attributes:protected] => Array (

 [startLine] => 4

 [endLine] => 4

)

)

 [expr] => PhpParser\Node\Scalar\LNumber Object (

 [value] => 1

 ...

We can see that the if statement has a property called cond that contains the
parsed condition, which is an instance of Expr\Assign. In fact, all the
statements we're going to test have the cond property, so testing whether they

contain an assignment in condition is going to be relatively simple. The only
exception is the for loop, where the condition might have multiple
expressions separated by the comma , character.

Since the syntax tree is a nested structure, we'll need some way to iterate it
recursively. Fortunately, this is supported by the library out of the box via the
NodeTraverser class and by registering custom visitors. Visitors are classes
with multiple callbacks that are called when the tree traverser starts/ends
processing the entire tree or enters/leaves a single node.

We will make a very simple node visitor that checks for the node type and
eventually the cond property. This is a way we can spot all the assignments
inside conditions and print their respective line number from the source PHP
script.

Consider the following code. This will also be part of the custom operator
that we'll write later:

// php_parser_02.php

use PhpParser\NodeTraverser;

use PhpParser\ParserFactory;

use PhpParser\Node;

use PhpParser\Node\Stmt;

use PhpParser\Node\Expr;

use PhpParser\NodeVisitorAbstract;

class MyNodeVisitor extends NodeVisitorAbstract {

 public function enterNode(Node $node) {

 if (($node instanceof Stmt\If_ ||

 $node instanceof Stmt\ElseIf_ ||

 $node instanceof Stmt\While_

) && $this->isAssign($node->cond)) {

 echo $node->getLine() . "\n";

 } elseif ($node instanceof Stmt\For_) {

 $conds = array_filter($node->cond, [$this, 'isAssign']);

 foreach ($conds as $cond) {

 echo $node->getLine() . "\n";

 }

 }

 }

 private function isAssign($cond) {

 return $cond instanceof Expr\Assign;

 }

}

$syntax = ParserFactory::PREFER_PHP7;

$parser = (new ParserFactory())->create($syntax);

$code = file_get_contents('_test_source_code.php');

$traverser = new NodeTraverser();

$traverser->addVisitor(new MyNodeVisitor());

$stmts = $parser->parse($code);

$traverser->traverse($stmts);

As you can see, we're checking each node type with multiple instanceof
statements and their respective cond properties. With the for statement, we
need to check the array of the cond statements but the rest is analogous.

Every time we spot our tested style check, we just print the line number so
that the preceding example will print the following:

$ php php_parser_02.php

3

5

6

7

We can see that the line numbers really match the source file we presented
earlier. This is all nice but not very helpful when we want to use it with
RxPHP or, even more interestingly, with pthreads.

Implementing PHPParserOperator
If we wanted to process multiple files, we could just run the parser multiple
times. But what if we wanted to have better control over what files are going
in, or we wanted to make the preconfigured parser with our custom node
visitor easily embeddable into any RxPHP application.

For example, let's assume we want to use the PHP Parser library in the
following way:

// php_parser_observer_01.php

Observable::fromArray(['_test_source_code.php'])

 ->lift(function() {

 $classes = [AssignmentInConditionNodeVisitor::class];

 return new PHPParserOperator($classes);

 })

 ->subscribe(new DebugSubject());

We have a typical RxPHP chain of operators where we lifted
PHPParserOperator. This class takes in its constructor an array of classes
that will be added as node visitors to its internal NodeTraverser.

As an input, we're using a primitive array of filenames that'll be emitted by
the source Observable. The observer will then receive just an array of code
style violations reported by each of the visitor classes.

Before writing the operator itself, we should first take a look at how to
modify the visitor class from the previous example. Since we want to be able
to add any number of custom node visitors that can check anything they
want, we need to be able to collect all their results and re-emit them as a
single value by PHPParserOperator.

Writing AssignmentInConditionNodeVisitor

We can start by defining an interface that all our node visitors have to
implement:

// ObservableNodeVisitorInterface.php

interface ObservableNodeVisitorInterface {

 public function asObservable();

}

The one requirement for a node visitor is to return an Observable where it'll
emit all code style violations:

// AssignmentInConditionNodeVisitor.php

use PhpParser\NodeVisitorAbstract as Visitor;

use PhpParser\Node;

// We're omitting the rest of use statements ...

class AssignmentInConditionNodeVisitor

 extends Visitor implements ObservableNodeVisitorInterface {

 private $subject;

 private $prettyPrinter;

 public function __construct() {

 $this->subject = new Subject();

 $this->prettyPrinter = new PrettyPrinter\Standard();

 }

 public function enterNode(Node $node) {

 // Remains the same as above just instead of echoing the

 // line numbers we call $this->emitNext(...) method.

 }

 public function afterTraverse(array $nodes) {

 $this->subject->onCompleted();

 }

 public function asObservable() {

 return $this->subject->asObservable();

 }

 private function isAssign($cond) {

 return $cond instanceof Expr\Assign;

 }

 private function emitNext(Node $node, Expr\Assign $cond) {

 $this->subject->onNext([

 'line' => $node->getLine(),

 'expr' => $this->prettyPrinter->prettyPrintExpr($cond),

]);

 }

}

This node visitor uses a Subject internally and in the emitNext() method it
emits every code style violation as a single item. This item is an associative
array itself that contains the line number and the well formatted expression

that caused the violation (to make it obvious to the user why it's reported).
The PrettyPrinter class is a part of the PHP Parser library.

This Subject class also needs to emit a complete signal when we're done
with this syntax tree. That's in the afterTraverse() method. Calling the
complete signal is very important to let other operators work with this
Subject properly.

Since we need to expose this Subject, we need to be sure nobody else can
manipulate with it so we wrap it using the asObservable() operator.

Writing PHPParserOperator

This operator will hold a single reference to the PHP Parser that we'll invoke
for every file that comes to this operator. This also means that we'll need to
create a new instance of the NodeTraverser class for each file and add new
instances of each custom node visitor to it.

From the operator's point of view, all node visitors are just Observables that
emit style violations. The operator needs to collect all values from all of them
and then reemit this collection as a single item.

We'll split this example into two smaller chunks. First, we'll have a look at
the creation of the NodeTraverser instances filled with node visitors:

// PHPParserOperator.php

use Rx\ObservableInterface;

use Rx\ObserverInterface;

use Rx\SchedulerInterface;

use Rx\Operator\OperatorInterface;

use Rx\Observer\CallbackObserver;

use PhpParser\NodeTraverser;

use PhpParser\ParserFactory;

class PHPParserOperator implements OperatorInterface {

 private $parser;

 private $traverserClasses;

 public function __construct($traverserClasses = []) {

 $syntax = ParserFactory::PREFER_PHP7;

 $this->parser = (new ParserFactory())->create($syntax);

 $this->traverserClasses = $traverserClasses;

 }

 private function createTraverser() {

 $traverser = new NodeTraverser();

 $visitors = array_map(function($class) use ($traverser) {

 /** @var ObservableNodeVisitorInterface $visitor */

 $visitor = new $class();

 $traverser->addVisitor($visitor);

 return $visitor->asObservable()

 ->toArray()

 ->map(function($violations) use ($class) {

 return [

 'violations' => $violations,

 'class' => $class

];

 });

 }, $this->traverserClasses);

 return [$traverser, $visitors];

 }

 // ...

}

We keep an array of class names for node visitors in the $traverserClasses
property. When we want to create a new NodeTraverser, we iterate this array
with the array_map() function and instantiate each class. Then we not only
add it to the traverser but we also take its Observable (returned from
the asObservable() method) and chain it with the toArray() and map()
operators.

The toArray() operator collects all items emitted by the source Observable
and re-emits them as a single array when the source completes. This is why
we had to be sure we properly called complete in the
AssignmentInConditionNodeVisitor class. We also used map() to emit the
final collection of violations with the class name that generated them. This
isn't necessary, but for practical reasons we want to be able to tell what node
visitor generated these results (or, in other words, what style violations are in
this collection).

The createTraverser() method returns two values: the NodeTraverser
instance and an array of Observables returned from each node visitor.

The rest of PHPParserOperator is where the actual subscription happens:

class PHPParserOperator implements OperatorInterface {

 // ...

 public function __invoke($observable, $observer, $sched=null) {

 $onNext = function($filepath) use ($observer) {

 $code = @file_get_contents($filepath);

 if (!$code) { /* ... emit error message */ }

 list($traverser, $visitors) = $this->createTraverser();

 (new ForkJoinObservable($visitors))

 ->map(function($results) use ($filepath) {

 // $results = all results from all node visitors.

 $filtered = array_filter($results, function($result) {

 return $result['violations'];

 });

 return [

 'file' => $filepath,

 'results' => $filtered,

];

 })

 ->subscribeCallback(function($result) use ($observer) {

 $observer->onNext($result);

 });

 $stmts = $this->parser->parse($code);

 $traverser->traverse($stmts);

 };

 $callbackObserver = new CallbackObserver(

 $onNext,

 [$observer, 'onError'],

 [$observer, 'onCompleted']

);

 return $observable->subscribe($callbackObserver, $sched);

 }

}

First of all, we're using CallbackObserver, which just passes through all
error and complete signals. The interesting things happen only in the

anonymous function $onNext:

1. We're expecting each item to be a string representing a file path. We
read the content of the file with the file_get_contents() function to
get the source code we want to analyze.

2. Then, we call createTraverser(), which returns a new instance of
NodeTraverser and also an array of Observables, where we'll get all the
style violations. These are already wrapped with toArray() and map()
as we saw earlier.

3. We're creating a new ForkJoinObservable and passing it the array of
Observables from the previous call. We implemented this Observable in
Chapter 5 , Testing RxPHP Code. The ForkJoinObservable class
subscribes to all its source Observables and remembers only the latest
value emitted by each one of them. When all the source Observables are
complete, it reemits all the values as a single array. We know all the
sources will emit just one value and then complete, thanks to the
toArray() operator.

4. We're not interested in node visitors that didn't emit any violations, so
we remove them from the result in the map() operator.

5. In the end, we just subscribe the observer itself to this chain. Note that
we're purposely not using just subscribe($observer) because this
would reemit everything including errors and complete signals. The
Observable chain we created will complete immediately after emitting
its single value thanks to ForkJoinObservable, which is what we don't
want. Have a look at the previous chapter where we talked about sharing
a single instance of Subject and what unexpected results it might
produce. The same reasons apply here as well.

After all this, we just run the traverse() method that analyzes the source
code and, thanks to our custom node visitors with Observables, will emit all
violations that'll be gathered in ForkJoinObservable.

This was a pretty complex operator with a sophisticated behavior. If we go
back to the example where we showed how we want to use this operator, we
can see that all this logic is effectively hidden from us.

When we run the original example that we used earlier, we'll get the
following result:

$ php php_parser_observer_01.php

Array (

 [file] => _test_source_code.php

 [results] => Array (

 [0] => Array (

 [violations] => Array (

 [0] => Array (

 [line] => 3

 [expr] => $a = 1

)

 [1] => Array (

 [line] => 5

 [expr] => $b = 2

)

 [2] => Array (

 [line] => 6

 [expr] => $c = 3

)

 [3] => Array (

 [line] => 7

 [expr] => $d = 4

)

)

 [class] => AssignmentInConditionNodeVisitor

)

)

)

Each item coming from this operator is a series of nested arrays. We can see
the filename we analyzed and the array of results, where each items is
generated by one node visitor. Since we have just one result, we also have
just one array here. Each result is marked by the node visitor class name and
a list of violations. Each violation contains the line number and the exact
expression where it occurred.

This is all nice but how long would it take to analyze a larger project such as
the Symfony3 framework? Right now, Symfony3 (without third-party
dependencies) has over 3200 files. If processing a single file would take just
1ms, then analyzing the entire project would take over 3s (in fact, processing

would take much longer just because of so many filesystem operations).

So, this looks like a prime example where we could utilize our knowledge of
multithreaded programming in PHP with pthreads.

Implementing ThreadPoolOperator
We're going to write a universal operator that receives jobs represented by
Thread class instances from its source Observable. Then, it'll submit them to
an internal instance of the Pool class that we saw in the previous chapter.

In fact, this example with pthreads is going to be entirely built on all the
things we've learned in the previous chapter, so we won't recap them here.

Note

This example is also going to use PHP7 syntax in some situations since
pthreads v3 works only with PHP7 anyway.

For this operator, well internally use an event loop. In RxPHP, this means
we'll use the StreamSelectLoop class wrapped with a Scheduler class. Let's
see the source code for ThreadPoolOperator and then talk about why it's
implemented like this:

// ThreadPoolOperator.php

class ThreadPoolOperator implements OperatorInterface {

 private $pool;

 public function __construct($num = 4,

 $workerClass = Worker::class, $workerArgs = []) {

 $this->pool = new Pool($num, $workerClass, $workerArgs);

 }

 public function __invoke($observable, $observer, $sched=null) {

 $callbackObserver = new CallbackObserver(function($task) {

 /** @var AbstractRxThread $task */

 $this->pool->submit($task);

 },

 [$observer, 'onError'],

 [$observer, 'onCompleted']

);

 $dis1 = $sched->schedulePeriodic(function() use ($observer) {

 $this->pool->collect(function($task) use ($observer) {

 /** @var AbstractRxThread $task */

 if ($task->isDone()) {

 $observer->onNext($result);

 return true;

 } else {

 return false;

 }

 });

 }, 0, 10);

 $dis2 = $observable->subscribe($callbackObserver);

 $disposable = new BinaryDisposable($dis1, $dis2);

 return $disposable;

 }

}

The constructor for ThreadPoolOperator takes the same arguments as the
constructor for the Pool class that is created right away. The interesting
things take place in the __invoke() method.

Every item that arrives to this operator is sent to the thread pool with the
submit() method. This means that ThreadPoolOperator can only work with
items represented by the Thread class from the pthreads extension (and of
course all classes extending this class).

Internally, we use the Scheduler class to periodically call a callable that will
check the thread pool for threads that have finished and are ready to be
collected. This is the same collect() method we saw in the previous
chapter. However, in this implementation we're making only a single check in
every iteration of the callable. There's one very important reason why we
want to use it this way. We know that we can use the collect() method in a
loop that runs as long as there are tasks scheduled to be run.

The loop typically looks like this:

$remaining = N;

while ($remaining !== 0) {

 $pool->collect(function(Thread $work) use (&$remaining) {

 $done = $work->isDone();

 if ($done) {

 $remaining--;

 }

 return $done;

 });

}

This is of course correct. The only problem is that this call is blocking. The
interpreter is stuck in this loop and doesn't let us do anything else. If we
wanted to use such a loop and at the same time read data from a stream via
StreamSelectLoop (see Chapter 6 , PHP Streams API and Higher-Order
Observables), we wouldn't be able to receive anything as long as this loop is
running. Another example that wouldn't work if we used just this while loop
could be IntervalObservable , which needs to schedule timers itself. These
wouldn't be triggered until this loop is ended.

That's why we're periodically scheduling a 10ms timer to run collect() just
once and then let other timers or streams be handled. The finished threads are
kept in the Pool class until we read and reemit their results.

This implementation has one very important behavior. Since it is running all
tasks in parallel and completely independently of the rest of the Observable
chain, we need to be aware when we send the complete signal.

Consider the following code:

Observable::fromArray([1,2,3])

 ->map(function($val) {

 return new MyThread($val);

 })

 ->lift(function() {

 return ThreadPoolOperator(...);

 })

...

In this example, the ThreadPoolOperator class receives three instances of
MyThread that'll be submitted to the Pool instance, but it also receives a
complete signal. This complete signal is immediately passed to its observer
that unsubscribes before any of the threads are finished and emit any value.

At the same time, ThreadPoolOperator can't decide for itself when you want

to send the complete signal. Sometimes when the thread pool is empty and
there are no tasks running. Other times we might want to start threads based
on PHP stream activity that can happen at any time.

That's why we don't send complete signals automatically.

Implementing PHPParserThread
Now we can take a look at how the actual parser task is going to be
implemented. We already know that it needs to be represented by a class
extending the default Thread class from the pthreads extension and we also
know that we're going to process files using the PHP Parser, so we can reuse
the PHPParserOperator class.

Before we do that, we should define some common behavior for all Thread
objects:

// AbstractRxThread.php

abstract class AbstractRxThread extends Thread {

 private $done = false;

 protected $result;

 public function getResult() {

 return $this->result;

 }

 public function isDone() {

 return $this->done;

 }

 protected function markDone() {

 $this->done = true;

 }

}

All tasks we want to run with ThreadPoolOperator need to extend this
abstract class that defines some common methods.

Notice that we don't have a setter method for the $result property. This is
intentional and we'll see why when we look at the implementation of
PHPParserThread that we will use in this application:

class PHPParserThread extends AbstractRxThread {

 private $filenames;

 public function __construct($filename) {

 $this->filenames =

 (array)(is_array($filename) ? $filename : [$filename]);

 /** @var Volatile result */

 $this->result = [];

 }

 public function run() {

 $last = 0;

 Observable::fromArray($this->filenames)

 ->lift(function() {

 $classes = ['AssignmentInConditionNodeVisitor'];

 return new PHPParserOperator($classes);

 })

 ->subscribeCallback(function ($results) use (&$last) {

 $this->result[$last++] = (array)[

 'file' => $results['file'],

 'results' => $results['results'],

];

 }, null, function() {

 $this->markDone();

 });

 }

}

As you can see, we're using typecasting for the exact same reasons as
described in the previous chapter. Also notice that we're wrapping the input
file with an array. Since we want to make this class reusable, we'll support
both passing a single file and an array of files. We're initializing the $result
property with an empty array that's automatically converted to a Volatile
object by pthreads (again, for more information refer to the previous chapter).
For this reason, we need to keep track of the number of items already
persistent by ourselves with the $last variable. Also, notice that our result is
always going to be an array, even when processing just a single file.

At this point, we need to be aware why not to use any setter method for
$result. In the previous chapter, when talking about Volatile objects, we
said that pthreads automatically convert arrays to Volatile when assigning
to a property in any class extending the Threaded class. For this reason, we
can't use a setter because we wouldn't be able to force typecasting to array
with (array). This automatic conversion happens on assignment, so we'd
have to force all results in AbstractRxThread to be arrays or leave it to the
automatic conversion, which is something we definitely don't want.

To be extra clear about this issue, let's consider the following setter method:

public function setResult($result) {

 $this->result = $result;

}

The assignment happens inside this function where we don't want to force
using arrays with (array) typecast. We might want to use a simple string or
an integer, for example.

So this was our PHPParserThread class that we'll use in this example. There's
actually one more issue.

Creating a new thread with pthreads means we're internally creating a new
PHP interpreter context. The only classes and functions this new context
knows are those built into the PHP interpreter itself. This new context has no
idea what Observable or PHPParserOperator classes are.

Just like we include the autoload.php Composer autoloader script when
running any PHP application, we need to do this for every new thread we
create. Since we don't want to do this every time we use PHPParserThread,
we can make use of a custom worker that'll do it for us in its run() method.
This run() method is called when spawning a new interpreter context and
lets us initialize it by, for example, including the autoload.php script.

Implementing PHPParserWorker
For the sake of simplicity, we're not defining our classes in namespaces and
usually just including them with the require_once keyword, such as in the
following example:

require_once __DIR__ . '/../Chapter 02/DebugSubject.php';

For this reason, we need to tell the autoloader created inside each worker
where to find such classes ideally without relying on the require_once
statements.

Our worker will be a simple class (based on the official example on how to
use Composer's autoloader with pthreads at
https://github.com/krakjoe/pthreads-autoloading-composer):

// PHPParserWorker.php

class PHPParserWorker extends \Worker {

 protected $loader;

 public function __construct($loader) {

 $this->loader = $loader;

 }

 public function run() {

 $classLoader = require_once($this->loader);

 $dir = __DIR__;

 $classLoader->addClassMap([

 'DebugSubject' => $dir . '/../Chapter 02/DebugSubject.php',

 'ThreadWorkerOperator' => $dir.'/ThreadWorkerOperator.php',

 'PHPParserThread' => $dir . '/PHPParserThread.php',

 'PHPParserWorker' => $dir . '/PHPParserWorker.php',

 'PHPParserOperator' => $dir . '/PHPParserOperator.php',

]);

 }

 public function start(int $options = PTHREADS_INHERIT_ALL) {

 return parent::start(PTHREADS_INHERIT_NONE);

 }

}

https://github.com/krakjoe/pthreads-autoloading-composer

This worker uses require_once to register the autoloader, where we add a
few class paths. The initialized interpreter context will be used by all Thread
instances ran by this worker.

Finally, we can put all this into a single Observable chain.

Running PHP Parser in a multithreaded
application
First, we will test all the classes we made right now on processing the same
sample file as earlier and then move to recursively processing directories
from the Symfony3 project:

// threads_php_parser_01.php

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

Observable::create(function(ObserverInterface $observer) {

 $observer->onNext('_test_source_code.php');

 })

 ->map(function($filename) {

 return new PHPParserThread($filename);

 })

 ->lift(function() {

 $args = [__DIR__ . '/../vendor/autoload.php'];

 return new

ThreadPoolOperator(2,PHPParserWorker::class,$args);

 })

 ->flatMap(function($result) {

 return Observable::fromArray((array)$result);

 })

 ->take(1)

 ->subscribeCallback(function($result) {

 print_r($result);

 }, null, null, $scheduler);

$loop->run();

This example is using all three classes for multithreading that we created in
this chapter. Let's see what happens in this operator chain step by step:

1. We have a single source Observable that emits the filename as its value.
Notice that we're purposely not sending the complete signal.

2. Then we use map to turn all filenames to instances of the
PHPParserThread class.

3. The ThreadPoolOperator class is fed with tasks it has to run.

4. We've mentioned already that all results from ThreadPoolOperator are
returned as arrays even when we processed just a single file. For this
reason, we use flatMap() to reemit its values and flatten the result. Also
we need to typecast the result from Volatile to an array.

5. We didn't send the complete signal from the source on purpose.
However, we know that we processed only one file and therefore we're
expecting only one item to be emitted. So we can use take(1) to send
the complete signal for us and the observer will unsubscribe
successfully, which will stop the event loop as well.

We can run this example and see that it returned exactly the same result as
the original version with just PHPParserOperator:

$ php threads_php_parser_01.php

Array (

 [file] => _test_source_code.php

 [results] => Array (

 [0] => Array (

 [violations] => Array (

 ...

Note

Although most of our CLI applications in this book are based on the Symfony
Console component, this time we don't even need it since the entire
application can be written as a single operator chain.

In this example, we spawned two workers even though we wanted to process
just a single file.

The question is what will be the difference if we try to process multiple files
in parallel. For this reason, we'll create a Symfony3 test project that contains
literally thousands of PHP files we can test:

$ composer create-project symfony/framework-standard-edition

testdir

The following example will work just like the previous one. This time,

however, we'll make a recursive iterator that walks through all subdirectories
and emits all PHP files it finds. We can write this all as one large operator
chain:

// threads_php_parser_02.php

const MAX_FILES = 500;

Observable::create(function($observer) use ($loop) {

 $start = microtime(true);

 $src = __DIR__ . '/../symfony_template';

 $dirIter = new \RecursiveDirectoryIterator($src);

 $iter = new \RecursiveIteratorIterator($dirIter);

 while ($iter->valid()) {

 /** @var SplFileInfo $file */

 $file = $iter->current();

 if ($file->getExtension() === 'php' && $file->isReadable())

{

 $observer->onNext($file->getRealPath());

 }

 $iter->next();

 }

 return new CallbackDisposable(function() use ($loop, $start)

{

 echo "duration: ".round(microtime(true) - $start, 2)."s\n";

 $loop->stop();

 });

 }) // End of Observable::create()

 ->bufferWithCount(20)

 ->map(function($filenames) {

 return new PHPParserThread($filenames);

 })

 ->lift(function() {

 $args = [__DIR__ . '/../vendor/autoload.php'];

 return new

ThreadPoolOperator(4,PHPParserWorker::class,$args);

 })

 ->flatMap(function($result) {

 return Observable::fromArray((array)$result);

 })

 ->take(MAX_FILES)

 ->filter(function($result) {

 return count($result['results']) > 0;

 })

 ->subscribeCallback(function($result) {

 print_r($result);

 }, null, null, $scheduler);

This is the longest operator chain we've written in this book. The main thing
that has changed is the source emitting filenames that we want to analyze. We
have two different iterators, where both of them return SplFileInfo objects.
We know how many files we want to test in total, so we can avoid emitting
redundant values with the take() operator.

When we spoke about backpressure in the previous chapters, we mentioned
the bufferWithCount() operator that stacks values and then reemits them in
a single array. This comes very handy now where we don't want to create a
task on the thread pool for every single file and rather emit them in batches.

In the end, we also used filter() to ignore all the results that don't have any
violations. Of course, we're interested only in files that have at least one
violation.

An important part of this example is that it measures how long it took to run
this entire application (from the initial subscription until disposing
CallbackDisposable).

If we run this code, we'll see a large list that looks similar to the following:

$ php threads_php_parser_02.php

...

Array (

 [file] =>

...vendor/symfony/src/Symfony/Bridge/Twig/AppVariable.php

 [results] => Array (

 [0] => Array (

 [violations] => Array (

 [0] => Array (

 [line] => 101

 [expr] => $request = $this->getRequest()

)

)

 [class] => AssignmentInConditionNodeVisitor

)

)

)

...

The line reported contains the following code:

if ($request = $this->getRequest()) {

This is really a code style that we wanted to be able to report.

Now comes the important question, what is the effect of running the analyzer
in multiple-threads? We can make a couple of reruns with settings such as 1,
2, 4, and 6 threads. To get more relevant results, we can increase the number
of files processed to 1,000 and also disable the xdebug extension that
otherwise slows down the execution significantly. On average, the times were
as follows:

1 thread = 5.60s

2 threads = 3.52s

4 threads = 3.08s

6 threads = 4.80s

As we can see, increasing the number of threads starts to be
counterproductive. These times were measured on 2, 5 GHz Intel Core i5,
which is a dual-core processor with an SSD hard drive. The result for a
higher number of threads would probably be better with a non-SSD hard
drive because each thread would have to spend more time loading file
contents, which would allow other threads to execute in the meantime.

We almost reached half the time of running just a single thread, which is a
realistic expectation. On a dual-core processor and with the overhead
generated by RxPHP and PHP itself, this is an expected result.

We can have a look at the output of the htop command that shows the current
CPU usage to prove that both cores are fully utilized:

Current CPU usage when running threads_php_parser_02.php example

The htop tool is showing four cores because there are two hardware threads
per core (it's in fact just a dual-core processor).

Running the parser in parallel in a single process by just utilizing pthreads is
pretty efficient.

Our use case can be generalized as simply splitting a job among multiple
workers. We don't really care what protocols we'll use or how the distribution
is going to happen. We don't even care about what worker will process a
particular batch. We just need to get the job done.

This is an ideal use case for Gearman.

Introduction to Gearman
Gearman is a framework for distributing work among multiple processes and
machines. Due to its functionality, it can serve as a manager, load balancer,
or interface between different languages with no single point of failure.

Since this book is about Rx/reactive/asynchronous programming, we're going
to cover Gearman fairly quickly. Needless to say, Gearman is very easy to set
up and use.

The Gearman PHP extension is written in the C language, so we need to
install it via PECL or a package manager relevant to your platform (refer to
http://gearman.org/download/ for more information).

Gearman's name is an anagram of the word "Manager" and it pretty well
captures its purpose. Gearman doesn't do the work itself. It just receives a
task (also referred to simply as a job) from a client and delegates it to an
available worker.

The structure of any Gearman application is easily understood from the
following diagram:

http://gearman.org/download/

Diagram from the official Gearman documentation (http://gearman.org/)

Every Gearman application has the following three main components:

Gearman Job Server: This is usually run as a daemon that accepts
tasks from clients and delegates them to workers. It's written in C
(originally in Perl) and doesn't do any work by itself. It's also able to
keep the current tasks queue persisted in a database so it can be restored
on failure.
Client: This is any application in any language that needs some job to be
done. This can be a web application that needs to send an e-mail or a
CLI application that needs to run static analysis on a couple of files. The
client doesn't do the job by itself. It sends a message to the job server
and either waits until it's done or just waits for confirmation from the job
server that it was added to the queue.
Worker: This is the part that actually does the job delegated by the job
server. It can be written in any language as well. It contains a list of
functions that it's able to perform and based on that the job server
assigns the work it needs to do.

So in order to start using Gearman, we need to have the job server part
installed and running on our system; it's usually called gearman or
gearmand. You can find the instructions how to install and run Gearman for
your platform at http://gearman.org/download/ .

http://gearman.org/download/

String strlen client and worker
We can create a very simple application, where we'll have a worker that takes
a string and returns its length. The client in this case will just send a string to
the job server requesting to get the length back.

Our client is going to be pretty simple. It'll just request a job, strlen, to be
done and then wait until it receives a response from the job server:

// gearman_client_01.php

$client = new GearmanClient();

$client->addServer('127.0.0.1');

$client->setTimeout(3000);

$length = @$client->doNormal('strlen', 'Hello World!');

if (empty($length)) {

 echo "timeout\n";

} else {

 var_dump(intval($length));

}

Our client connects to a single job server and sets a three-second timeout. If it
doesn't receive a response within this time, then it continues executing the
rest of the script. We're using a single server, but we can have multiple job
servers running on different machines, and if any of them crash, clients will
continue with the other ones. This makes the system fault tolerant. Also,
notice that our client is blocking.

We're requesting a job to be done using the doNormal() method, where we
need to specify the name of the job we want to do and all the data the worker
needs in order to complete it. Apart from doNormal(), there are also methods
such as doLow() and doHigh() that request the job with a different priority.

Typically, when we want to run a job, we want to know its result. For
example, in this case, we wanted to wait to get the string length back. In
some situations, we just want to schedule a job, but we're not interested in
when it happens and what its result is. A typical use case is a web application
where a user registers and we want to send them a confirmation e-mail. We

don't want to slow down the page load by waiting until the e-mail is sent.

For this reason, the Client class also has the doBackground() method (with
their higher and lower priority variants). This method sends the request to a
job server and only waits for confirmation that it was received. The client is
not interested in when it'll be executed and with what result. If we refer to the
previous use case with a web application and sending confirmation e-mails, it
doesn't matter whether the e-mail is sent right now or after 10 seconds.

The worker script will wait for jobs from the job server, execute them, and
return the result:

// gearman_worker_01.php

$worker = new GearmanWorker();

$worker->addServer('127.0.0.1');

$worker->addFunction('strlen', function(GearmanJob $job) {

 echo 'new job: ' . $job->workload()

 . ' (' . $job->workloadSize() . ")\n";

 return strlen($job->workload());

});

while ($worker->work()) { }

Usually, the worker runs in a loop and therefore is blocking as well. We
connect to the same job server as the client and define a single function called
strlen. This is the same name that the client specified when requesting a job.
The value returned from the callable will be sent back to the client
automatically.

Now, we can test this example. Before running either the client or the worker,
we need to start the Gearman job server:

$ gearmand --verbose DEBUG

We can use the verbose option to make the process more talkative. Without
specifying any other options, the job server will listen on port 4730, which is
used by the PHP extension as well, so we don't need to configure anything.

Then, we'll run both the worker and the client. It doesn't matter which one we

run first. Our client waits for three seconds before the timeout expires, so we
can run it first and the pending job will be queued by the job server until
there's at least one worker available to execute this job.

The console output after we run both the client and the worker will look like
the following:

$ php gearman_worker_01.php

new job: Hello World! (12)

The worker is, in fact, running in a loop, so after processing this job, it'll wait
for another one:

$ php gearman_client_01.php

int(12)

The client just receives the response and ends.

What's sometimes useful is that the Gearman CLI also contains a gearman
application that can run as a client or worker. In our example, we didn't have
to write a worker at all and could simply run the following command:

$ gearman -w -f strlen -- wc -c

This command creates a worker that connects to its default settings (localhost
on port 4730). With -w, we told Gearman that we want to start a worker, and
with -f strlen, we defined what function it handles. Then, when it receives
a new job, it spawns a new subprocess and runs wc -c, where it feeds the
workload as a standard input. So, this command is a drop-in replacement for
our PHP worker.

Of course we can run multiple workers at the same time on the same
machine. Each worker can handle multiple different functions. The job server
is responsible for deciding what worker is going to process each job.

Running PHP Parser as a Gearman worker
We've already seen how to run our PHPParserOperator in multiple threads.
We can, however, run it in multiple processes more easily than in threads by
writing a Gearman worker that runs PHPParserOperator internally.

The worker will be very simple. It'll just receive the filename it needs to load
and analyze, and then return the result:

// gearman_worker_02.php

$worker = new GearmanWorker();

$worker->addServer('127.0.0.1');

$worker->addFunction('phpparser', function(GearmanJob $job) {

 Observable::just($job->workload())

 ->lift(function() {

 $classes = ['AssignmentInConditionNodeVisitor'];

 return new PHPParserOperator($classes);

 })

 ->subscribeCallback(function($results) use ($job) {

 $job->sendComplete(json_encode($results));

 });

});

while ($worker->work()) { }

The main difference is that we're not using any return statement in the
callable for the phpparser function. Since everything is asynchronous in
RxPHP, we need to use the sendComplete(...) method to send the result to
the client and mark the job as done.

When we run this worker, it won't print any output to the console:

$ php gearman_worker_02.php

Then we can test it right away, without writing any client application, and
just use the CLI command as a client:

$ gearman -f phpparser -s "_test_source_code.php" | json_pp

{

 "results" : [

 {

 "violations" : [

 {

 "expr" : "$a = 1",

 "line" : 3

 },

 ...

],

 "class" : "AssignmentInConditionNodeVisitor"

 }

],

 "file" : "_test_source_code.php"

}

We can see that the console output is the same as we saw previously when
testing the PHPParserOperator operator.

The -f phpparser tells gearman what function we want to run, and with -s
we can skip reading from the standard input and just pass the string as a
workload. At the end, we used json_pp to pretty print the output to make it
more readable.

Of course, we're running this example on the same machine and in the same
directory, so we don't need to worry about correct file paths. In a real-world
application, we'd probably send the file content instead.

This was a fairly quick introduction to Gearman. As we can see, using
Gearman is very easy. Actually, in PHP it's much easier to use Gearman than
using the pthreads extension to run jobs in parallel.

From our perspective, it's important to know that Gearman applications are
usually blocking, so everything we mentioned about running multiple even
loops in Chapter 6 , PHP Streams API and Higher-Order Observables, is
very relevant here as well.

If you want to read more about Gearman, head over to their official
documentation with examples at http://gearman.org/manual/ .

http://gearman.org/manual/

Comparing pthreads and Gearman
The main difference between using pthreads and Gearman is obviously
whether we're running a single process with multiple threads or just one
process multiple times.

The advantages and disadvantages of pthreads were partly covered in the
previous chapter and also here. Having completely separated PHP interpreter
contexts makes things a little non-intuitive (for example, using autoloaders
and yet again sharing data between contexts) and definitely requires more
debugging than the same single-threaded equivalent. However, if we're
willing to spend the necessary time with it, the performance benefits are
significant and at the end running a single process is always easier than
taking care of multiple processes.

Gearman is designed to delegate work from clients to workers and send the
results back to clients, if necessary. It's not supposed to be a general message
exchanging framework. Thanks to this very specific focus, using Gearman is
very easy. With workers, we don't care who, where, and sometimes not even
when the work will be done. This is all up to the job server to decide.

In terms of scaling, threads are not a real option here. On the other hand,
scaling with Gearman is simple. Just add more workers and Gearman will
distribute the load evenly between them.

If we wanted to use some more adaptable frameworks, then RabbitMQ or
ZMQ would be some good options. These are designed to be easily
optimizable, for example by disabling acknowledge messages or using the
publish/subscribe pattern, and overall provide more flexibility than Gearman.
However, more effort is definitely required to implement these properly.

Summary
The purpose of this chapter was to use multithreaded and distributed
computing on a practical example that also involves RxPHP.

We used PHP Parser library to make static code analysis of PHP scripts. We
wrapped the parser with the RxPHP operator and ran it in parallel in multiple
threads using the pthreads extension and in multiple workers with Gearman.

We also saw how we can make thread pools reusable in RxPHP by wrapping
them with ThreadPoolOperator.

The next chapter will cover topics that didn't fit into any of the previous ones,
and show some interesting and advanced use cases for RxPHP.

Chapter 10. Using Advanced
Operators and Techniques in
RxPHP
This is the last chapter dedicated to explaining new RxPHP operators. There
are few topics that didn't fit into any of the preceding chapters, so we'll cover
them now. A couple of times we'll revisit Observable multicasting from
Chapter 8 , Multicasting in RxPHP and PHP7 pthreads Extension, in
practical examples and also four new operators, zip(), window(),
materialize(), and dematerialize(), which are more advanced techniques
for modifying Observable chains.

In particular, in this chapter we'll cover the following topics:

The zip() and window() operators that work with higher-order
Observables
The materialize() and dematerialize() operators
Error propagation in Observable chains and how to properly catch
exceptions from user-defined callbacks
Theory around creating hot/cold Observables and the difference in
unsubscribing and completing Observable chains
Creating anonymous operators
Writing a recursive DirectoryIteratorObservable that emits all files
in a directory and all its subdirectories
Writing a variant of DirectoryIteratorObservable based on
multicasting
Writing an FTP client based on RxPHP
Using RxPHP in blocking and synchronous applications

We've seen so many RxPHP operators throughout this entire book. All of
them worked with values in some way or another.

However, there are also operators that are, in principle, similar to those used
by hot Observables or cold Observables when testing the RxPHP code that

we saw in Chapter 5 , Testing RxPHP Code.

The zip() operator
The zip() operator is similar to the ForkJoinObservable that we
implemented ourselves in Chapter 5, Testing RxPHP Code. The main
difference is that it internally stores all emissions for each source Observable
in a separate queue and then re-emits their values when all sources have a
value at a specific index.

This will be understood better by looking at the following example:

// zip_01.php

$obs1 = Observable::range(1, 7);

$obs2 = Observable::fromArray(['a', 'b']);

$obs3 = Observable::range(42, 5);

$obs1->zip([$obs2, $obs3])

 ->subscribe(new DebugSubject());

We have three source Observables where each of them emits a different
number of items. Then the zip() operator emits an array of values only when
all the sources have emissions at the same index. So we know that
DebugSubject will receive only two items because the $obs2 Observable
emits only two items.

In other words, the zip() operator can't make the third emission because it
doesn't have a third value for the second $obs2 Observable.

The output from this example is as follows:

$ php zip_01.php

07:26:16 [] onNext: [1,"a",42] (array)

07:26:16 [] onNext: [2,"b",43] (array)

07:26:16 [] onCompleted

Notice that it contains only the first two values for each source Observable.

We can have a look at another and more complicated example that simulates
asynchronous emission from multiple source Observables:

// zip_02.php

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

$obs1 = Observable::interval(1000, $scheduler)

 ->map(function($i) { return chr(65 + $i); });

$obs2 = Observable::interval(500, $scheduler)

 ->map(function($i) { return $i + 42; });

Observable::interval(200, $scheduler)

 ->zip([$obs1, $obs2])

 ->subscribe(new DebugSubject());

$loop->run();

Since each source Observable emits with a different interval, the zip()
operator will have to emit according to the slowest one, which emits every
1000ms. Values for the rest of the Observables are then stacked internally in
queues.

This example will print the following output:

$ php zip_02.php

08:48:47 [] onNext: [0,"A",42] (array)

08:48:48 [] onNext: [1,"B",43] (array)

08:48:49 [] onNext: [2,"C",44] (array)

08:48:50 [] onNext: [3,"D",45] (array)

...

Notice that we're actually not losing values. All values that weren't re-emitted
yet are kept inside the zip() operator.

The window() operator
The window() operator belongs among the more advanced higher-order
Observables. We've seen the switchLatest() operator in Chapter 6, PHP
Streams API and Higher-Order Observables, and we know that it
automatically subscribes to the latest Observable emitted from its source
Observable.

The exact opposite is the window() operator that takes a so called "window
boundary" Observable as an argument and splits the source emissions into
separate Observables based on emission from the "window boundary"
Observable.

An example will definitely make this more obvious:

// window_01.php

$source = Observable::range(1, 10)->publish();

$windowBoundary = $source->bufferWithCount(3);

$source->window($windowBoundary)

 ->doOnNext(function() {

 echo "emitting new window Observable\n";

 })

 ->switchLatest()

 ->subscribe(new CallbackObserver(function($value) {

 echo "$value\n";

 }));

$source->connect();

We have a source Observable emitting 10 items in total. The window()
operator splits them into chunks of three items because of the Observable in
the $windowBoundary variable that we pass as an argument to window(). This
means that we'll make four Observables in total where the first three emit
three items (and then complete) and the last one just a single item (and then it
completes as well).

To make this even more obvious, we added the doOnNext() operator to print

a log every time we create a new Observable.

The switchLatest() operator is then used to always subscribe only to the
latest Observable emitted by window().

So in the console it'll look like we split the source into chunks of three items.
In other words, we split the source into windows of three times:

$ php window_01.php

emitting new window Observable

1

2

3

emitting new window Observable

4

5

6

emitting new window Observable

7

8

9

emitting new window Observable

10

You're probably wondering what's this all good for. The window() operator,
optionally takes a selector function. This function receives as an argument the
current window before pushing it to its observers. For us this means that we
can further chain operators to it before it's passed further, which can be very
useful.

Imagine we're in a situation where we're receiving messages of many
different types, but we want to be able to guarantee that we pass through only
one message of each type every 100 messages.

We can simulate such a situation by creating a source Observable with 500
items where we repeat only three different characters. Then split it into
windows with 100 items each and use the selector function to chain the new
window Observables with the distinct() operator:

// window_02.php

$chars = [];

for ($i = 0; $i < 500; $i++) {

 $chars[] = chr(rand(65, 67));

}

echo 'Source length: ' . count($chars) . "\n";

$source = Observable::fromArray($chars)->publish();

$windowBoundary = $source->bufferWithCount(100);

$source->window($windowBoundary, function($observable) {

 return $observable->distinct();

 })

 ->doOnNext(function() {

 echo "emitting new window Observable\n";

 })

 ->switchLatest()

 ->subscribe(new CallbackObserver(function($value) {

 echo "$value\n";

 }));

$source->connect();

Every Observable emitted by the window() operator has its own instance of
the distinct() operator, so after every 100 items we start comparing distinct
items all over again.

This example prints the following output:

$ php window_02.php

Source length: 500

emitting new window Observable

A

C

B

emitting new window Observable

C

A

B

emitting new window Observable

B

C

A

emitting new window Observable

C

B

A

emitting new window Observable

B

C

A

emitting new window Observable

Note that the order of characters is always going to be different because the
source is generated randomly.

We can see that even though each window contains 100 items, these are
always filtered by the distinct() operator that we chained to the window
Observable in the selector function.

Note

The window() operator definitely falls into the group of more advanced and
not so common operators in practice. In RxJS 5 there're even more variants of
this operator for more specific use cases.

The materialize() and
dematerialize() operators
In Chapter 5 , Testing RxPHP Code, when we talked about testing in RxPHP,
we weren't using real values, and instead were passing some special recorded
objects that wrapped the actual value with OnNextNotification (or its error
or complete variants). We did this because of the TestScheduler class and
because we had to be able to uniquely identify each value in order to compare
object references and not just their values. Comparing just values wouldn't
guarantee that they are identical because primitive types such as strings or
integers aren't passed by reference by default.

There are two operators that use a similar principle. These are
materialize() and dematerialize().

The first one takes each value, wraps it with a notification object, and re-
emits it as a typical onNext signal. This includes error and complete signals
as well. These are wrapped and re-emitted like any other value, and after that
a complete signal is sent.

This means we can completely ignore error signals or handle them as regular
values. Before we talk more about what we can do with all this, let's consider
the following example where we'll see what the materialize() operator
actually does:

// materialize_01.php

Observable::range(1, 3)

 ->materialize()

 ->subscribe(new DebugSubject());

This is just a RangeObservable that emits three values and then sends
complete signals. The materialize() operator converts each signal into an
object, so this example will print the following output to the console:

$ php materialize_01.php

20:15:48 [] onNext: OnNext(1)

(Rx\Notification\OnNextNotification)

20:15:48 [] onNext: OnNext(2)

(Rx\Notification\OnNextNotification)

20:15:48 [] onNext: OnNext(3)

(Rx\Notification\OnNextNotification)

20:15:48 [] onNext: OnCompleted() (...\OnCompletedNotification)

20:15:48 [] onCompleted

We can see that DebugSubject received five signals in total. The first three
are just numbers emitted by the source RangeObservable. Then follows the
complete signal from the source, wrapped as well, and after that another
complete signal, but this time emitted by the materialize() operator itself.

Now let's have a look at another example where we emit an error:

// materialize_02.php

Observable::create(function(\Rx\ObserverInterface $observer) {

 $observer->onNext(1);

 $observer->onNext(2);

 $observer->onError(new \Exception("It's broken"));

 $observer->onNext(4);

 })

 ->materialize()

 ->subscribe(new DebugSubject());

This is very similar to the previous example, but this time we're forcing one
error signal among normal emissions. As we said, the materialize()
operator wraps the error and then calls complete.

When we run this example, we'll see that the wrapped value 4 never arrived
to DebugSubject since it has already unsubscribed because of the complete
signal:

$ php materialize_02.php

20:25:59 [] onNext: OnNext(1)

(Rx\Notification\OnNextNotification)

20:25:59 [] onNext: OnNext(2)

(Rx\Notification\OnNextNotification)

20:25:59 [] onNext: OnError(Exception) (...\OnErrorNotification)

20:25:59 [] onCompleted

So what's all this actually good for when we can't, in fact, skip either the

error or the complete signals?

While materialize() wraps signals with a notification object, there's also
the exact opposite operator called dematerialize(). And, of course, we can
use these two operators independently of each other.

Customizing error bubbling with
dematerialize()
Imagine that we have an Observable chain that needs to emit multiple errors,
but it can't decide which of these are severe and need to be propagated further
down the chain and which can be safely ignored. In a normal Observable
chain, the first error would cause immediate unsubscription.

With clever usage of notification objects and the dematerialize() operator,
we can let the error pop up when we want.

In the following example, we generate a series of nine numbers. Every third
number is then converted into an error notification. The errors aren't
important and can be safely ignored. But the sixth number is different, and
when it appears we always want to signal an error.

Consider the following example that generates multiple error signals and
wraps them with notifications:

// materialize_03.php

Observable::range(1, 9)

 ->materialize()

 ->map(function(Notification $notification) {

 $val = null;

 $notification->accept(function($next) use (&$val) {

 $val = $next;

 }, function() {}, function() use (&$val) { $val = -1; });

 if ($val % 3 == 0) {

 $msg = "It's really broken";

 $e = $val==6 ? new LogicException($msg) : new Exception();

 return new OnErrorNotification($e);

 } else {

 return $notification;

 }

 })

 ->subscribe(new DebugSubject());

This example uses materialize() at the beginning to convert all values to

notifications. Then, inside the map() operator, we unwrap all notifications
with their accept() method that propagates their value to the appropriate
callable (it's like calling subscribe() on an Observable). This way we can
see its value and just return it as it is or eventually return
OnErrorNotification instead.

When we run this example, we'll get the following output:

$ php materialize_03.php

21:05:42 [] onNext: OnNext(1)

(Rx\Notification\OnNextNotification)

21:05:42 [] onNext: OnNext(2)

(Rx\Notification\OnNextNotification)

21:05:42 [] onNext: OnError(Exception) (...\OnErrorNotification)

21:05:42 [] onNext: OnNext(4)

(Rx\Notification\OnNextNotification)

21:05:42 [] onNext: OnNext(5)

(Rx\Notification\OnNextNotification)

21:05:42 [] onNext: OnError(LogicException)

 (...\OnErrorNotification)

21:05:42 [] onNext: OnNext(7)

(Rx\Notification\OnNextNotification)

21:05:42 [] onNext: OnNext(8)

(Rx\Notification\OnNextNotification)

21:05:42 [] onNext: OnError(Exception) (...\OnErrorNotification)

21:05:42 [] onNext: OnCompleted() (...\OnCompletedNotification)

21:05:42 [] onCompleted

This is what we wanted to get. None of the errors actually did anything, and
they were all emitted as a normal onNext signal. Note that instead of number
six we have a LogicException. Now the last thing is to filter out all errors
that are unimportant for us. This means all errors except the single
LogicException.

We'll prepend the filter() and dematerialize() operators before the
subscribe() call. We have to use dematerialize() to turn notifications to
their respective signals. So the preceding example will look like the
following:

// materialize_04.php

// the preceding chain from materialize_03.php

->filter(function(Notification $notification) {

 if ($notification instanceof OnErrorNotification) {

 $e2 = new OnErrorNotification(new LogicException());

 return (string)$notification == (string)$e2;

 } else {

 return true;

 }

})

->dematerialize()

->subscribe(new DebugSubject())

If we rerun this finalized example, we'll get the following output:

$ php materialize_04.php

21:09:33 [] onNext: 1 (integer)

21:09:33 [] onNext: 2 (integer)

21:09:33 [] onNext: 4 (integer)

21:09:33 [] onNext: 5 (integer)

21:09:33 [] onError (LogicException): It's really broken

All the other errors were ignored by the filter() operator and the only one
that was preserved and unwrapped with dematerialize() is the
LogicException.

This method of handling errors is obviously a hack that we typically don't
want to do, but it's good to know that even this is possible with RxPHP out of
the box, without creating custom observers or Observables.

Error handling in RxPHP operator
chains
You may be wondering why we can't just emit multiple errors from an
Observable and then use materialize() to wrap them.

Consider the following example with Observable::create that emits two
errors:

// materialize_05.php

Observable::create(function($observer) {

 $observer->onNext(1);

 $observer->onNext(2);

 $observer->onError(new Exception());

 $observer->onNext(4);

 $observer->onError(new Exception());

 $observer->onNext(6);

 })

 ->materialize()

 ->subscribe(new DebugSubject());

It might look like this example should wrap all the values and errors into
notifications because we put the materialize() operator right after the
Observable::create. Let's see what happens when we run this:

$ php materialize_05.php

21:14:53 [] onNext: OnNext(1)

(Rx\Notification\OnNextNotification)

21:14:53 [] onNext: OnNext(2)

(Rx\Notification\OnNextNotification)

21:14:53 [] onNext: OnError(Exception) (...\OnErrorNotification)

21:14:53 [] onCompleted

So why can we only see the emissions up to the first error even though we
used materialize()?

Every time we use lift(), we're actually creating a new instance of
AnonymousObservable. This Observable creates an instance of

AutoDetachObserver internally on subscription, and after that, it calls its
subscription callable. This AutoDetachObserver class automatically calls
dispose() on its internal disposable object (which unsubscribes from the
source) when it receives the error or complete signal.

Since almost all operators internally use lift(), they are also using
AutoDetachObserver.

This includes Observable::create(), which is just a static method that
creates a new AnonymousObservable.

So this is why an Observable can never emit more than one error or
complete signal. They will always be ignored because the
AutoDetachObserver class has already unsubscribed when it received the
first one.

The default error handler
We know that each observer can take as an optional parameter an error
handler that is called on error notification. Although the default behavior is
different than we might expect. If we do specify the error callable, we can
handle the error however we want to.

For example, consider the following example where we specify only the error
handler:

// error_01.php

Observable::range(1, 5)

 ->filter(function($val) {

 if ($val === 3) {

 throw new \Exception("It's broken");

 }

 })

 ->subscribe(new CallbackObserver(

 null,

 function(\Exception $e){

 $msg = $e->getMessage();

 echo "Error: ${msg}\n";

 })

);

When we run this example we'll see that the handler is called properly:

$ php error_01.php

Error: It's broken

Now what happens if don't set any error handler at all? We can see this
situation in the following example:

// error_02.php

Observable::range(1, 5)

 ->filter(function($val) {

 if ($val === 3) {

 throw new \Exception("It's broken");

 }

 })

 ->subscribe(new CallbackObserver());

We're using the CallbackObserver without any parameter, so the following
output is what we'll get:

$ php error_02.php

PHP Fatal error: Uncaught Exception: It's broken in /.../Chapter

10/error_02.php:12

Stack trace:

#0 [internal function]: {closure}(3)

#1 /.../reactivex/rxphp/lib/Rx/Operator/FilterOperator.php(40):

call_user_func(Object(Closure), 3)

#2 [internal function]: Rx\Operator\FilterOperator->Rx\Operator\

{closure}(3)

...

The exception was simply rethrown. We didn't set any error callable, so this
is probably something we didn't expect to happen. It's good to be aware of
this behavior because it means that if we don't handle error notifications they
might cause unexpected script termination.

Note

The default error handling is the same in RxJS 5; however, there's an ongoing
discussion whether this is the correct way Rx should behave. It's likely that in
the future versions of RxJS this behavior will change.

Catching exceptions inside operators
A similar principle applies also when calling any user defined functions
inside an Observable or an operator. For example, when using the map()
operator the callable is wrapped with a try-catch block. Any exception thrown
inside our callable is then sent as an error notification.

This means that neither Observables nor operators are supposed to throw
exceptions unless something unexpected occurs that shouldn't happen under
normal circumstances. Throwing an exception inside a user defined callable
is a valid use case.

We can test the difference on these two examples. First we'll throw an
exception inside the selector function to the zip() operator from the same
example we saw previously:

// error_03.php

$obs1 = Observable::range(1, 7);

$obs2 = Observable::fromArray(['a', 'b']);

$obs3 = Observable::range(42, 5);

$obs1->zip([$obs2, $obs3], function($values) {

 throw new \Exception("It's broken");

 })

 ->subscribe(new DebugSubject());

The exception will be caught and sent as an error notification:

$ php error_03.php

09:41:05 [] onError (Exception): It's broken

In this example, we will see what happens when we try to use a regular object
instead of a source Observable:

// error_04.php

$obs1 = Observable::range(1, 7);

$obs2 = Observable::fromArray(['a', 'b']);

$object = new stdClass();

$obs1->zip([$obs2, $object])

 ->subscribe(new DebugSubject());

Note that this type of error is catchable in PHP7:

$ php error_04.php

PHP Fatal error: Uncaught Error: Call to undefined method

 stdClass::subscribe() in

/.../lib/Rx/Operator/ZipOperator.php:110

...

The exception was left to terminate the script execution because this is a
situation that shouldn't happen. It probably means that we have a bug in our
code where we unintentionally wanted to use an stdClass instance instead of
an Observable.

The Observable::create() method
versus the Subject class
Apart from creating custom Observables, we know that we can use the
Observable::create() static method or an instance of the Subject class to
emit items by ourselves, but so far we haven't talked about which one we
should choose over the other and why.

As a rule of thumb it's usually better to use Observable::create(). It's not
always possible, but it has its advantages.

For the next couple of examples, let's consider that we want to work with an
API that implements the following interface. This could be any
Facebook/Twitter/WebSocket or system API:

interface RemoteAPI {

 public function connect($connectionDetails);

 public function fetch($path, $callback);

 public function close();

}

Hot/cold Observables and
Observable::create()
In the most general sense an Observable is just a function that connects an
observer with the producer of values. By producer we understand any source
of values that is unrelated to RxPHP. For example, this can be any class
implementing our RemoteAPI interface.

We'll see that this works well with our definitions of hot/cold Observables
from Chapter 2, Reactive Programming with RxPHP. A cold Observable
creates its producer (in our case, connects to the remote API) on subscription.
This means that we don't want to make any remote calls to the API until we
have at least one observer.

So a cold Observable internally using the RemoteAPI interface could look
like the following:

// observable_create_01.php

class RemoteServiceAPI implements RemoteAPI {

 ...

}

Observable::create(function(ObserverInterface $observer) {

 $producer = new RemoteServiceAPI();

 $producer->connect('...');

 $producer->fetch('whatever', function($result) use ($observer){

 $observer->onNext($result);

 });

 return new CallbackDisposable(function() use ($producer) {

 $producer->close();

 });

});

This fulfills our expectations from a cold Observable. The producer doesn't
exist until we subscribe and it automatically also closes the connection when
unsubscribing because we returned the CallbackDisposable instance from
the callback to the Observable::create() method.

If we wanted to create a hot Observable with the Observable::create()
method it would be similar, but this time the Observable is not responsible
for neither creating nor closing the producer:

// observable_create_02.php

$producer = new RemoteServiceAPI();

$producer->connect('...');

Observable::create(function($observer) use ($producer) {

 $producer->fetch('whatever', function($result) use ($observer){

 $observer->onNext($result);

 });

});

// somewhere later...

$producer->close();

The producer is created independently on the hot Observable and
subscribing/unsubscribing to it has no effect on the producer.

You might be wondering how is this all related to comparing
Observable::create() and the Subject class?

The point is that we can't simply do the same with Subjects. We could of
course use a Subject in this scenario, but than we'd have to handle all
subscription and unsubscription logic ourselves (including creating/closing
the producer). Nonetheless, in Chapter 8, Multicasting in RxPHP and PHP7
pthreads Extension, we talked about the internal states in Subjects, which is
also very relevant here.

As a rule of thumb, every time you end up using a Subject think whether you
could achieve the same with Observable::create() instead.

Call stack length and
EventLoopScheduler
When developing PHP applications, it's handy to enable the Xdebug
extension that we can use to debug our code. However this comes with the
cost of reduced performance, higher memory usage, and a limited number of
possible nested function calls.

The last issue is relevant to us in particular. For example, in RxPHP when we
make a long operator chain and use the ImmediateScheduler method.
Consider the following very long chain of operators:

// stack_length_01.php

Observable::range(1, 10)

 ->doOnNext(function($val) { /* do whatever */ })

 ->startWithArray([12, 15, 17])

 ->skip(1)

 ->map(function($val) {

 return $val * 2;

 })

 ->filter(function($val) {

 return $val % 3 === 0;

 })

 ->doOnNext(function($val) { /* do whatever */ })

 ->takeLast(3)

 ->sum()

 ->doOnNext(function($val) { /* do whatever */ })

 ->subscribe(new CallbackObserver(function() {

 $backtrace = debug_backtrace();

 $len = count($backtrace);

 foreach ($backtrace as $item) {

 $args = count($item['args']);

 $func = $item['function'];

 if (isset($item['file'])) {

 $file = substr($item['file'],

 strrpos($item['file'], '/') + 1);

 echo "${file}#${item['line']} ${func} ${args} arg/s\n";

 } else {

 echo "${func} ${args} arg/s\n";

 }

 }

 echo "============\n";

 echo "Stack length: ${len}\n";

 }));

This example chains nine operators and then in the observer prints the entire
call stack. We know that the call stack will start at the subscriber's onNext
handler and traverse upwards via onNext() calls to the RangeObservable
where it starts emitting values. Then the stack goes back to the bottom via
subscribe() calls.

The shortened output looks as follows:

$ php stack_length_01.php

{closure} 1 arg/s

CallbackObserver.php#45 call_user_func_array 2 arg/s

AbstractObserver.php#38 next 1 arg/s

AutoDetachObserver.php#53 onNext 1 arg/s

AbstractObserver.php#38 next 1 arg/s

DoOnEachOperator.php#34 onNext 1 arg/s

...

DoOnEachOperator.php#51 onCompleted 0 arg/s

Rx\Operator\{closure} 0 arg/s

CallbackObserver.php#35 call_user_func 1 arg/s

AbstractObserver.php#19 completed 0 arg/s

RangeObservable.php#59 onCompleted 0 arg/s

ImmediateScheduler.php#39 Rx\Observable\{closure} 1 arg/s

...

TakeLastOperator.php#55 subscribe 2 arg/s

Observable.php#740 __invoke 3 arg/s

AnonymousObservable.php#33 Rx\{closure} 2 arg/s

ReduceOperator.php#73 subscribe 2 arg/s

Observable.php#740 __invoke 3 arg/s

AnonymousObservable.php#33 Rx\{closure} 2 arg/s

DoOnEachOperator.php#55 subscribe 2 arg/s

Observable.php#740 __invoke 3 arg/s

AnonymousObservable.php#33 Rx\{closure} 2 arg/s

stack_length_01.php#39 subscribe 1 arg/s

============

Stack length: 103

We can see that this call stack contains 103 nested function calls. This would

be obviously hard to debug, so we can reduce its length by using
EventLoopScheduler instead of defaultImmediateScheduler. This will
make every callback to the schedule() method run as a separate event by
EventLoopScheduler.

We'll set the Scheduler right in the Observable::range() call as follows:

// stack_length_02.php

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

Observable::range(1, 10, $scheduler)

 ...

 ->subscribe(new CallbackObserver(function() {

 ...

 }));

$loop->run();

Now when we run this example the call stack will contain only 65 nested
calls:

$ php stack_length_02.php

{closure} 1 arg/s

CallbackObserver.php#45 call_user_func_array 2 arg/s

AbstractObserver.php#38 next 1 arg/s

...

Timers.php#90 call_user_func 2 arg/s

StreamSelectLoop.php#177 tick 0 arg/s

stack_length_02.php#45 run 0 arg/s

============

Stack length: 65

This obviously comes with a cost, so using the EventLoopScheduler class is
always going to be slower than using the default ImmediateScheduler. Also
the emissions that are wrapped with schedule() are called from the event
loop and not from the place the schedule() method was invoked.

This can make debugging even harder, but the EventLoopScheduler class is
especially useful when we don't want to block the execution thread and also
want to let other code be executed (thanks to its event loop). In Chapter 6,
PHP Streams API and Higher-Order Observables, we talked about even

loops in great detail and how it's important not to block the execution thread.
In such cases, using EventLoopScheduler is a very good choice.

Note

Using an asynchronous Scheduler is also relevant to RxJS because in a
JavaScript environment the call stack length is limited.

Unsubscribing versus completing an
Observable
We know that when we have an observer we'll stop receiving items when the
source Observable completes or when we manually unsubscribe. However,
we haven't talked about why we might choose one over the other.

There're basically two ways to stop receiving items:

Unsubscribe from the source Observable
Using an operator that completes the chain (such as the takeUntil()
operator)

By unsubscribing we usually mean that we don't want to be receiving items
any more. This obviously doesn't mean that the source Observable stopped
sending items or sent the complete notification. We're just no longer
interested in the items coming from the source.

As an important consequence to manually unsubscribing, the complete
handler is never called. Consider the following example where we
unsubscribe after receiving a few items:

// unsubscribe_01.php

$loop = new StreamSelectLoop();

$scheduler = new EventLoopScheduler($loop);

$subscription = Observable::range(1, 10, $scheduler)

 ->subscribe(new CallbackObserver(

 function($val) use (&$subscription) {

 echo "$val\n";

 if ($val === 3) {

 $subscription->dispose();

 }

 },

 null, // no error handler

 function() {

 echo "completed!\n";

 })

);

$loop->run();

Note that we had to use the EventLoopScheduler class instead of the default
one because we need to run the observer callables as separate events in the
loop. If we used the ImmediateScheduler class then the $subscription
variable would always be null because all the callables would be called
within the subscribe() call. In other words, the $subscription variable
would be unassigned.

When we run this demo we can see that it prints the first three items and then
ends and no complete handler was called:

$ php unsubscribe_01.php

1

2

3

But what if we're in a situation where the complete handler is important and
we always want to call it when we unsubscribe? In such cases we can use any
operator that sends a complete notification, for example, takeUntil() and an
instance of the Subject class:

// unsubscribe_02.php

$subject = new Subject();

$subscription = Observable::range(1, 10)

 ->takeUntil($subject)

 ->subscribe(new CallbackObserver(

 function($val) use ($subject) {

 echo "$val\n";

 if ($val === 3) {

 $subject->onNext(null);

 }

 },

 null, // no error handler

 function() {

 echo "completed!\n";

 })

);

We're using the $subject variable to notify the takeUntil() operator that we
want to complete and then manually call the onNext() method inside a
callable passed to the CallbackObserver class.

This way we ensured that apart from just unsubscribing the observer, we'll
also call the complete handler, as we can see from the console output:

$ php unsubscribe_02.php

1

2

3

completed!

Whether we want to simply unsubscribe or send the complete notification is
up to us. A big advantage of using a Subject class and the takeUntil()
operator is that we can easily complete multiple chains by using a single
onNext() call.

If we wanted to just unsubscribe multiple chains, then we'd have to collect
and keep all their disposables and then call dispose() on all of them
manually.

Anonymous operators
We've been using the lift() method to use custom operators in Observable
chains a lot. In RxPHP v1, it's also the only way to implement custom
operators. This method takes as a parameter the so called operator factory,
which is a callable that returns an instance of the operator we want to use.
This method is called every time we subscribe, so it might be called just once
in total.

When using operators, we're making use of PHP's magic __invoke() method
that allows us to use any object just as if it were a function.

Let's consider this simple example that shows the __invoke() method:

// func_01.php

class MyClass {

 public function __invoke($a, $b) {

 return $a * $b;

 }

}

$obj = new MyClass();

var_dump($obj(3, 4));

We make an instance of MyClass that we used as if it was a regular function
with $obj(3,4). If we run this example, we'll get the correct result:

$ php func_01.php

int(12)

Operators in RxPHP use the same principle. In fact the lift() method is
deep inside the Observable class, defined as the following:

public function lift(callable $operatorFactory) {

 return new AnonymousObservable(

 function($observer, $schedule) use ($operatorFactory) {

 $operator = $operatorFactory();

 return $operator($this, $observer, $schedule);

 });

}

The callable $operatorFactory doesn't need to return an operator object at
all. It can just return another callable that'll take three arguments and do
whatever it wants to. This is useful when we want to do a one-time operation
where it doesn't make sense to make it reusable and write a custom operator
for it.

For example, we can make the same operations on the source Observable and
the observer just like in any other operator class:

// anonymous_02.php

Observable::range(1, 5)

 ->map(function($val) {

 return $val * 2;

 })

 ->lift(function() {

 return function($observable, $observer, $scheduler) {

 $prevValue = 0;

 $onNext = function($value) use ($observer, &$prevValue) {

 $observer->onNext($value * $prevValue);

 $prevValue = $value;

 };

 $innerObs = new CallbackObserver(

 $onNext,

 [$observer, 'onError'],

 [$observer, 'onCompleted']

);

 return $observable->subscribe($innerObs);

 };

 })

 ->subscribe(new DebugSubject());

Note that we have a $prevValue variable that is kept in this context, and we
can use it among all invocations of the onNext signals.

Writing a custom
DirectoryIteratorObservable
In the previous chapter, we used a couple of DirectoryIterators to
recursively get all files in a directory and all its subdirectories. When iterating
files, we might want to filter not only by filenames, but also by file size or
access restrictions. Ideally, we could have a custom Observable that just
checks the files names to match a certain pattern and then emits SplFileInfo
objects so we can implement our filtering logic ourselves.

For this purpose, we'll write our own DirectoryIteratorObservable that
does all this and has some extra options on top of that. We can split the
implementation into two smaller chunks:

// DirectoryIteratorObservable.php

class DirectoryIteratorObservable extends Observable {

 private $iter;

 private $scheduler;

 private $selector;

 private $pattern;

 public function __construct($dir, $pattern = null,

 $selector = null, $recursive = true, $scheduler = null) {

 $this->scheduler = $scheduler;

 $this->pattern = $pattern;

 if ($recursive) {

 $dirIter = new RecursiveDirectoryIterator($dir);

 $iter = new RecursiveIteratorIterator($dirIter);

 } else {

 $iter = new DirectoryIterator($dir);

 }

 $this->iter = $iter;

 if ($selector) {

 $this->selector = $selector;

 } else {

 $this->selector = function(SplFileInfo $file) {

 return $file;

 };

 }

 }

 // ...

}

We're still using RecursiveIteratorIterator internally; however, we have
full control over it and won't let other developers fiddle with it. Somebody
could, for instance, use rewind() or seek() methods and unintentionally
move the inner pointer, not to mention that using three different iterators to
traverse a directory structure is a little too much and not easily reusable.

That's why our Observable hides all this from the user and has just a couple
of input parameters. We definitely want to be able to set a pattern to filter
files right away. Sometimes we might want to traverse several directories
recursively and other times just a single directory, so we'll have a separate
parameter for this. The last behavior we want to be able to modify is what
this operator is going to emit. By default, it's the SplFileInfo object, but if
we set a custom selector function we can emit, for example, just the file
names.

The main logic is in the subscribe() method, which is built around a
scheduleRecursive() method from the Scheduler class:

// DirectoryIteratorObservable.php

class DirectoryIteratorObservable extends Observable {

 // ...

 public function subscribe($observer, $scheduler = null) {

 if ($this->scheduler !== null) {

 $scheduler = $this->scheduler;

 }

 if ($scheduler === null) {

 $scheduler = new ImmediateScheduler();

 }

 $this->iter->rewind();

 return $scheduler->scheduleRecursive(

 function($reschedule) use ($observer) {

 /** @var SplFileInfo $current */

 $current = $this->iter->current();

 $this->iter->next();

 if (!$this->pattern || preg_match($this->pattern,$current))

{

 try {

 $processed = call_user_func($this->selector, $current);

 $observer->onNext($processed);

 } catch (\Exception $e) {

 $observer->onError($e);

 }

 }

 if ($this->iter->valid()) {

 $reschedule();

 } else {

 $observer->onCompleted();

 }

 });

 }

}

Note

Note that in RxPHP v2 the subscribe() method doesn't take the Scheduler
as a parameter. This means that we'd access the Scheduler class directly with
the Scheduler::getImmediate() static method instead.

We're looping over all values produced by the iterator and emitting them until
we reach the end, where we emit just the complete signal. Note that we're
wrapping the call to the selector function, so if it throws an exception we'll
emit it as an error signal.

We can test this Observable on the same directory structure from the
Symfony3 template, as we did in the previous chapter:

// directory_iterator_01.php

$dir = __DIR__ . '/../symfony_template';

(new DirectoryIteratorObservable($dir, '/.+\.php$/'))

 ->subscribeCallback(function(SplFileInfo $file) {

 echo "$file\n";

 });

This will print a very long list of file names (when SplFileInfo objects are
type-casted to strings they return only filenames).

Note that, internally, this Observable works similarly to, for example,
RangeObservable. In fact, it doesn't keep an array of observers and instead
immediately emits all values to the observer that subscribed (we also move
the iterator's inner pointer to the start with rewind()). The consequences are
obvious.

If we subscribe twice to this Observable, it'll loop the entire iterable twice as
well.

DirectoryIteratorSharedObservable
So this looks like a good use-case for multicasting. Of course, we could
append the publish() operator every time we use
DirectoryIteratorObservable, but this would be error prone as we could
easily forget to use it. Instead, we can make another Observable that wraps
DirectoryIteratorObservable, and appends the publish() operator to it
every time:

// DirectoryIteratorSharedObservable.php

class DirectoryIteratorSharedObservable extends Observable {

 private $inner;

 public function __construct() {

 $args = func_get_args();

 // PHP7 array unpacking with "..."

 $this->inner = (new

DirectoryIteratorObservable(...$args))

 ->publish();

 }

 public function subscribe($observer, $scheduler = null) {

 $this->inner->subscribe($observer, $scheduler);

 }

 public function connect() {

 return $this->inner->connect();

 }

 public function refCount() {

 return $this->inner->refCount();

 }

}

This Observable is just a wrapper around the original
DirectoryIteratorObservable, which is internally instantiated and then
chained with publish(). We're purposely using publish() and not share().
The share()operator also appends the refCount() operator, which
automatically subscribes/unsubscribes based on the number of observers.

This is useful with Observables that need to perform some asynchronous
operation, such as downloading data (our CURLObservable) or running code
in parallel (our ThreadPoolOperator). With Observables that emit all their
values immediately on subscription, such as RangeObservable or our fresh

DirectoryIteratorObservable, it wouldn't work as we expect. All values
would be emitted to the first observer because of the immediate call to the
connect() method inside the refCount() operator.

Now we can test this operator by subscribing multiple observers and then
calling the connect() method:

// directory_iterator_shared_01.php

$src = new DirectoryIteratorSharedObservable('.', '/.+\.php$/');

$src->subscribe(new DebugSubject('1'));

$src->subscribe(new DebugSubject('2'));

$src->subscribe(new DebugSubject('3'));

$src->connect();

The output for this demo will be a list of file names where each of the
observers will receive a single item at a time from the current directory:

$ php7 directory_iterator_shared_01.php

09:52:55 [1] onNext: ./materialize_01.php (SplFileInfo)

09:52:55 [2] onNext: ./materialize_01.php (SplFileInfo)

09:52:55 [3] onNext: ./materialize_01.php (SplFileInfo)

09:52:55 [1] onNext: ./materialize_02.php (SplFileInfo)

09:52:55 [2] onNext: ./materialize_02.php (SplFileInfo)

09:52:55 [3] onNext: ./materialize_02.php (SplFileInfo)

...

We avoided reemitting the same directory structure for each observer and
multicasted items from the source with the public() operator and manually
called the connect() method.

FTP client with RxPHP
For this example, let's imagine that we're running an FTP server where we
want to perform a couple of operations. PHP has built-in support for FTP
connections, so we don't need to install any extra libraries.

Our goal is to be able to do some basic operations with an FTP connection
while utilizing what we know from RxPHP. When working with
Observables, most of the time we've been using them in operator chains, but
Observables can be used as asynchronous inputs or outputs as well. When
returning a value from an asynchronous function, we'd usually use a Promise,
but the same principles work with Observables too, and we can also benefit
from chaining them.

Note that all FTP calls in PHP are blocking. Some functions have their non-
blocking variants, such as functions to upload or download files, but others,
such as functions that change or list a directory, are always blocking. For this
reason, we'll stay only with their blocking variants. This way we can handle
their correct and error states with Observables. This is also going to be a nice
example where we can use multicasting.

So this is going to be an example of how to use RxPHP in a synchronous and
blocking application.

We'll split our first FTPClient class into two smaller chunks and see how we
can implement RxPHP in this use-case:

// FTPClient.php

class FTPClient {

 private $conn;

 private $cwd = '/';

 public function __construct($host, $username, $pass, $port=21)

{

 $this->conn = ftp_connect($host, $port);

 if (!$this->conn) {

 throw new \Exception('Unable to connect to ' . $host);

 }

 if (!ftp_login($this->conn, $username, $pass)) {

 throw new \Exception('Unable to login');

 }

 }

 public function chdir($dir) {

 $this->cwd = '/' . $dir;

 if (!ftp_chdir($this->conn, $dir)) {

 throw new \Exception('Unable to change current directory');

 }

 }

 public function listDir() {

 return Observable::defer(function() {

 $files = ftp_nlist($this->conn, $this->cwd);

 return Observable::fromArray($files)

 ->shareReplay(PHP_INT_MAX);

 });

 }

 public function close() {

 ftp_close($this->conn);

 }

 // ...

}

These are the most basic methods we need. Many FTP functions in PHP
return just true or false based on whether they succeeded or not. We used this
in the constructor to throw exceptions if any of these cases fail.

Then there's the first method that returns an Observable. When we want to
get a list of all the files and directories in a directory, we'll call the
listFiles() method. This method returns an Observable from the array of
files it received. As we said, FTP functions in PHP are blocking, so we're not
calling ftp_nlist() asynchronously and need to wait until it finishes. The
fact that we're returning an Observable means that we can feed this
Observable into another method in this FTPClient class that takes an
Observable as an argument.

We're purposely using Observable::defer in order to postpone the actual
network request until we subscribe to it. We'll see why this is important when

we start writing a test application for FTPClient.

We can now have a look at three more methods that'll get the file size,
download files from the FTP server, or upload files to the server:

class FTPClient {

 // ...

 public function size(Observable $files) {

 return Observable::create(function($obs) use ($files) {

 $files->subscribeCallback(function($filename) use ($obs) {

 $size = ftp_size($this->conn, $filename);

 $obs->onNext(['filename' => $filename, 'size' => $size]);

 });

 });

 }

 public function upload(Observable $files, $m = FTP_ASCII) {

 $subject = new Subject();

 $files->subscribeCallback(function($file) use ($subject, $m)

{

 $fp = fopen($file, 'r');

 $filename = basename($file);

 if (ftp_fput($this->conn, $filename, $fp, $m)) {

 $subject->onNext($filename);

 } else {

 $e = new Exception('Unable to upload ' . $filename);

 $subject->onError($e);

 }

 });

 return $subject->asObservable();

 }

 public function download(Observable $files, $dir, $m=FTP_ASCII)

{

 $subject = new Subject();

 $files->subscribeCallback(

 function($file) use ($subject, $m, $dir) {

 $dest = $dir . DIRECTORY_SEPARATOR . $filename;

 if (ftp_get($this->conn, $dest, $filename, $mode)) {

 $subject->onNext($filename);

 } else {

 $e = new Exception('Unable to download ' . $filename);

 $subject->onError($e);

 }

 });

 return $subject->asObservable();

 }

}

The last two methods are very similar in principle. They both take an
Observable as an argument and subscribe to it. Then they create an internal
Subject that is used to emit successful uploads/downloads and errors. The
same Subject is then turned into an Observable with an asObservable()
operator and returned.

What's interesting with this approach is that we don't need to know which
files we want to download/upload in advance. In other words, we can call
these methods with instances of Subject and just carry on executing our code.
Then, sometime later, we can start pushing items to these Subjects, which
will cause the files to be downloaded/uploaded. We'll see this in a moment.

We also implemented the size() method that takes as an argument an
Observable and subscribes to it. This method is internally implemented with
Observable::create() for the same reason as listDir(). We want to defer
emitting any values until there's at least one subscription.

Now we can start using this class in a simple demo application that'll first just
connect to an FTP server, list all files and directories, and then try to change
the current directory to the last one in the list:

// ftp_01.php

$ftp = new FTPClient('...', 'user', 'password');

echo "List content...\n";

$ftp->listDir()

 ->takeLast(1)

 ->subscribeCallback(function($dir) use ($ftp) {

 echo "Changing directory to "$dir"...\n";

 $ftp->chdir($dir);

 });

We're using listDir() to get the content of the current directory, which is
the root directory for this user. Then we take just the last item and try to go

inside that directory. We used the ftp_nlist() function internally in
listDir() where it returns all files and directories together, so how do we
know that the last item in the list is really a directory and not a file?

If it was a file, then the call to chdir() would throw an exception. A simple
way to distinguish files from directories is by checking their size. Directories
always have a size of -1, while ordinary files have a real size that is always
greater or equal to 0:

// ftp_01.php

// ...

echo "File sizes...\n";

$getFileSizesSubject = new Subject();

$fileSizes = $ftp

 ->size($getFileSizesSubject->asObservable())

 ->doOnNext(function($file) {

 echo "Size of ".$file['filename']." is ".$file['size']."\n";

 })

 ->filter(function($file) {

 return $file['size'] != -1;

 })

 ->subscribe(new DebugSubject());

$ftp->listDir()->subscribe($getFileSizesSubject);

This demonstrates very well what we talked about. We have a Subject that we
pass as an argument to the size() method. This method is not going to
subscribe to it until its own chain has an observer, which happens on the last
line with DebugSubject.

We're still not calling any ftp_size() because the Subject class in the
$getFileSizesSubject variable hasn't emitted any items yet. This happens
when we call listDir(), which itself first calls ftp_nlist() to get a list of
all files and directories and then starts emitting items to the Subject class,
which then simply takes the item and re-emits it to its own observer, which is
the callable inside the size() method.

Since size() is based on Observable::create() and subscribe() methods,

it doesn't make any network calls until we start sending it items. This might
happen any time after we called it.

This all might look a little confusing, but all we're doing is just passing items
between a couple of Observables.

Another obvious use-case could be listing only files in a directory and then
downloading all of them. We have two methods that require an Observable as
a source of files. With size() they will be checked for their file size (to see
whether they're files at all) and for download() to download them. Of course,
we don't want to make two separate calls for each of these methods, so we'll
use the output from the Observable with only files (that is, the $fileSizes
variable) as the source Observable for the download() method.

In order to make this example a little more complicated, we'll assume that we
want to use the list of files once more and, for example, just print the file
names and their sizes:

// ftp_01.php

// ...

$fileSizes = $ftp

 ->size($getFileSizesSubject->asObservable())

 ->doOnNext(function($file) {

 echo "Size of ".$file['filename']." is ".$file['size']."\n";

 })

 ->filter(function($file) {

 return $file['size'] != -1;

 })

 ->publish();

$destDir = './_download';

@mkdir($destDir);

echo "Downloading files ...\n";

$filesToDownload = $fileSizes

 ->map(function($file) {

 return $file['filename'];

 });

$ftp->download($filesToDownload, $destDir)

 ->subscribeCallback(function($file) use ($destDir) {

 echo "$file downloaded";

 $fileDest = $destDir . DIRECTORY_SEPARATOR . $file;

 if (file_exists($fileDest)) {

 echo " - OK\n";

 } else {

 echo " - failed\n";

 }

 });

$fileSizes->subscribeCallback(function($file) {

 echo $file['filename'] . ' - ' . $file['size'] . "B\n";

});

$fileSizes->connect();

$ftp->listDir()->subscribe($getFileSizesSubject);

echo "Done\n";

In the $filesToDownload variable, we're storing a predefined chain of
operators that emits only file names coming from $fileSizes.

If we run this demo application, we'll get the following output (depending on
the FTP server we are connected to):

$ php ftp_01.php

List content...

Changing directory to "web"...

File sizes...

Downloading files ...

Size of . is -1

Size of .. is -1

Size of app is -1

Size of blog is -1

Size of cache is -1

Size of composer.json is 522

composer.json downloaded - OK

composer.json - 522B

Size of composer.lock is 23690

composer.lock downloaded - OK

composer.lock - 23690B

Size of log is -1

Size of src is -1

Size of stats is -1

Size of vendor is -1

Size of www is -1

Done

We can see that both Observables based on emissions from $fileSizes are
sharing the same connection (the doOnNext() operator is called just once for
each item).

We could also create methods listing only files or only directories. This could
look like the following:

class FTPClient {

 // ...

 public function listFiles() {

 return $this->size($this->listDir())

 ->filter(function($file) {

 return $file['size'] != -1;

 });

 }

 public function listDirectories() {

 return $this->size($this->listDir())

 ->filter(function($dir) {

 return $dir['size'] == -1

 && $dir['filename'] != '.'

 && $dir['filename'] != '..';

 })

 ->map(function($dir) {

 return $dir['filename'];

 });

 }

}

These both use the same principle as postponing subscriptions, as we
explained previously.

Summary
This chapter covered a couple of slightly unusual examples that are possible
with RxPHP, and which didn't fit into any of the previous chapters. These
aren't things that we use on a daily basis, but it's good to know that features
such as these are possible.

In particular, we went through the operators zip(), window(),
materialize(), and dematerialize(). We saw how to propagate and handle
errors in Observable chains and what role AutoDetachObserver has. Also, we
compared the Observable::create() static method and the Subject class
and when unsubscribing and completing an Observable chain. Apart from
this, we created anonymous operators and wrote the
DirectoryIteratorObservable class that recursively iterates a directory
structure. Finally, we used RxPHP to make a simple FTP client that uses
Observables for inputs and outputs.

In the last chapter, we're going to talk about implementations of Reactive
Extension in languages other than PHP. Most notably, we'll have a look at
RxJS-what it is, how it's related to RxPHP, and what differences we can
encounter in a JavaScript environment from PHP.

Chapter Appendix. Reusing
RxPHP Techniques in RxJS
Throughout this entire book, we've mentioned very often that certain
functionality (such as operators or certain Observables) work differently in
RxPHP and RxJS. Some operators from RxJS aren't even available in RxPHP
yet. There're also features of RxJS that aren't even possible to make in
RxPHP because of the nature of PHP interpreter.

We've referred to RxJS a lot even though Reactive Extensions were first
developed for .NET as Rx.NET.

In this chapter, we're going to focus on the differences between current
RxPHP and RxJS. Also, the knowledge of RxJS is very useful today because
its popularity is still rising thanks to JavaScript frameworks such as Angular
2 that heavily rely on RxJS.

Topics covered in this chapter are going to be a little unusual because these
will combine PHP and JavaScript (ECMAScript 6 - ES6, in particular):

We'll see what RxJS is, and we'll talk about where it stands in today's
world of JavaScript
We'll write a few very simple demos of RxJS, introducing us to
synchronous and asynchronous code in JavaScript
We'll talk about asynchronous events in JavaScript and how we can
benefit from them in RxJS
We'll see how and why higher order Observables behave differently in
RxJS and RxPHP
We'll talk about operators that aren't available in RxPHP right now but
are fully functional in RxJS

We expect you to know at least the basics of JavaScript and ideally the new
ES6 standard (aka ES2015) as well. This isn't required of course since RxJS
can be used with plain old JavaScript (ES5.1 to be precise), but it's very
relevant to RxJS and its development process.

Also, ES6 is already very well supported by Node.js, so we don't have any
reason not to use it.

Don't worry if you can't get your head around the new ES6 syntax that we'll
use in this chapter. If you want to know more about ES6, you can have a look
at a quick summary of the new functionalities it provides at
https://github.com/lukehoban/es6features .

We're going to run all examples in this chapter by Node.js runtime (
https://nodejs.org). If you're not familiar with Node.js, it's basically an
environment that uses Chrome's V8 JavaScript engine and lets us run
JavaScript code from a console.

https://github.com/lukehoban/es6features
https://nodejs.org

What is RxJS?
Very simply, RxJS is an implementation of Reactive Extensions in
JavaScript.

Now, get ready to get super confused.

Until December 2016, there were two major implementations of RxJS:

RxJS 4: This is the older implementation most people are familiar with.
Its source code is available at https://github.com/Reactive-
Extensions/RxJS , and it's written in JavaScript (ES5). As we said at the
beginning of this chapter, RxPHP refers at this moment mostly to this
older RxJS 4 version that'll become obsolete in the near future.
RxJS 5: The newer and completely rewritten RxJS that will replace the
older RxJS 4. Its source code is available at
https://github.com/ReactiveX/rxjs , and it's completely written in
TypeScript 2.0.

Because we've mentioned yet another programming language called
TypeScript, we should quickly look at what JavaScript versions are actually
out there and where (and also if) we can use them:

ES5.1: The good old JavaScript that probably everybody has
encountered at some point.
ES6 (also named ES2015): This is the newer standard of JavaScript. It's
backward compatible with ES5.1, and it brings features such as classes,
generators, arrow functions, and the let keyword to create block scoped
variables.
ES7 (ES2016): This is the even newer standard of JavaScript that brings
in yet more features such as the async/await keyword to avoid creating
callback hells.
TypeScript: This is a superset of ES6 specification supplemented with
type checking and is in the latest versions, also with features from ES7
such as the async/await keyword.

https://github.com/Reactive-Extensions/RxJS
https://github.com/ReactiveX/rxjs

So TypeScript was the language of choice for RxJS 5 because of its
compatibility with ES6 and type checking that helps prevent a lot of bugs in
compile time.

Well, while speaking of compiling, we should probably mention where we
can actually run any of these new and fancy languages:

ES5.1 is supported by every current browser including mobile browsers
and Node.js.
ES6 can already be used with the two major JavaScript engines:
Chrome's V8 and SpiderMonkey (used by FireFox). Although current
compatibility with ES6 is pretty good (as we can see at
http://kangax.github.io/compat-table/es6/), it's still not possible to rely
only on ES6 for browser-based applications. We obviously need to also
support older browsers and mobile devices. For this reason, any code
written in ES6 needs to be compiled to ES5 using a compiler such as
babel (https://babeljs.io/) or traceur (https://github.com/google/traceur-
compiler). This doesn't apply to Node.js where we can freely use ES6
since Node.js v4 is already pretty old, and the penetration of different
Node.js versions isn't such a problem like those we're used to from web
browsers (there's one important exception with ES6 module imports that
we'll mention later).
ES7 brings some features that are already implemented natively in
JavaScript engines (see http://kangax.github.io/compat-
table/es2016plus/); however, this is still music of the future. We're not
going to use ES7 features in Node.js in this chapter, to avoid compiling
our code from ES7 to ES6.
TypeScript is a relatively new language made by Microsoft and the
community around it. It's not going to be natively supported by any
JavaScript engines. It uses different syntax and new keywords that aren't
compatible with either ES6 or ES7. This means that TypeScript code
always needs to be compiled to ES6 or more commonly to ES5.

On the other hand, it's important to note that TypeScript is a superset of ES6.
This means that any ES5 or ES6 code is also a valid TypeScript code that
makes reusing already existing JavaScript very easy.

http://kangax.github.io/compat-table/es6/
https://babeljs.io/
https://github.com/google/traceur-compiler
http://kangax.github.io/compat-table/es2016plus/

This is in contrast to other languages that can be compiled to ES5, such as
Dart made by Google. Dart isn't compatible with JavaScript at all, and
basically, all code needs to be rewritten to Dart. This might be one of the
reasons why TypeScript is so popular today despite the fact that it came later
than Dart.

So for this chapter, we're going to use Node.js (ideally, v6.9+, but basically,
any v4+ should be fine) and ES6.

JavaScript module systems
To add to the confusion when talking about current JavaScript standards, we
should also mention different module systems used today to define
dependencies between JavaScript files.

Working with JavaScript was always tedious because there was never any
unified way to split code into multiple files and load it on demand or even to
bundle it.

So now we have nice ES6 syntax for ES6 modules available, let's consider
the following code:

import * as lib from 'lib';

console.log(lib.square(42));

Can you tell in what environment we can run this code natively today?

This was a trick question. We can't run it anywhere because no JavaScript
engine supports ES6 modules yet, not even Node.js.

Note

If you want to know more about why implementing ES6 modules into
Node.js is so complicated, read this article by one of the Node.js developers
at https://hackernoon.com/node-js-tc-39-and-modules-a1118aecf95e .

Node.js at this moment supports only using the require() function to load
modules in the CommonJS format (in fact, it's not exactly the CommonJS
format; it's just very close to it). The require() function is natively available
only in Node.js. If we wanted to use require() also in the browser, we'd
need a polyfill or a bundler to merge multiple JavaScript files linked via
require() calls into a single bundle.

If we really wanted to use ES6 module definitions right now, this would be
another reason we'd have to compile our code. Note that we could actually
compile ES6 code into another ES6 code, only to transform ES6 imports to

https://hackernoon.com/node-js-tc-39-and-modules-a1118aecf95e

one of the current module formats, such as UMD, CommonJS, AMD,
SystemJS, or globals.

This has been resolved by various bundling tools, such as Browserify,
webpack, SystemJS-Builder, or rollup.js. However, this just added yet
another layer of complexity. Moreover, these tools just bundle multiple files
into a single bundle. If we have a more complicated application where we
need to load third-party libraries (that can be bundled in any format, which
includes even the most basic Angular2 or React applications) we need to also
care about module loaders.

Module loaders are, for example, SystemJS, require.js, require1k, curl.js, and
probably dozens more.

This all means that when we start working on a JavaScript project today, we
need to plan ahead the following four different things:

What language I'm going to use? this has an effect on the features
available and also on the compiler you have to use
To what module format am I going to compile my source code?
What bundling tool I'm going to use?
How I am going to require my bundled project (by just including it via
the <script> tag or do I need a module loader)?

So, RxJS 4 avoided almost all of this because it's written in ES5. The only
necessary task is bundling it into a single file that can be loaded as easily as
just using the <script> tag.

With RxJS 5, it gets more complicated.

The deployment process of RxJS 5
The entire RxJS 5 project is written in TypeScript. This means that it needs to
be compiled to ES5, so we can use it in a browser or in Node.js.

The process goes as follows:

The entire source code is first compiled to ES6 using the TypeScript
compiler with the ES6 module resolution.
The ES6 code is then compiled again using closure-compiler-js made
by Google, which generates ES5 code.
This ES5 code is bundled using rollup.js (before rollup.js, they were
using Browserify) to create a single UMD bundle.
This bundled file together with ES5 versions of each file along with
their source maps and .d.ts files (TypeScript declaration file) are then
uploaded to an npm repository. When we use RxJS 5 in, for example,
Node.js, we will usually require only this single UMD bundle. When
using RxJS 5 in a browser, we can just include it via the <script> tag
thanks to the UMD module format.

Note

Universal Module Definition (UMD) is a universal module format that acts
as AMD, CommonJS, SystemJS, or global depending on the environment
loading it.

As we can see, developing applications in today's JavaScript is no joke. We'll
see that it also has some benefits. In particular, prototypical-based inheritance
can ease extending the existing Observables, which isn't possible in PHP for
instance.

But before that, let's see how we can use RxJS 5 in Node.js.

A quick introduction to RxJS 5 in
Node.js
We're already pretty experienced reactive developers, so none of these
examples should surprise us.

We'll start by installing RxJS 5 via npm (basically, a dependency management
tool similar to Composer in PHP):

$ npm install rxjs

As we said earlier, we're going to use ES6 syntax, but we want to avoid
recompiling our code because of ES6 imports. That's why we'll always use
the require() function to load dependencies. This example should be very
simple:

// rxjs_01.js

const Rx = require('rxjs/Rx');

Rx.Observable.range(1, 8)

 .filter(val => val % 2 == 0)

 .subscribe(val => console.log('Next:', val));

We loaded RxJS 5 with rxjs/Rx under the Rx constant. Node.js knows where
to find the rxjs package (it automatically looks for packages into the
node_modules directory). The full name rxjs/Rx means that it'll load file
from ./node_modules/rxjs/Rx.js. It is like the entry point of this library. It
contains a lot of require() calls and then it exports all the classes we as
developers are allowed to use. All these classes are then accessible with the
Rx prefix (for example, Rx.Subject or Rx.TestScheduler).

The arrow syntax val => val % 2 == 0 we're using is just a shortcut to
declare an anonymous function with a return statement:

function(val) {

 return val % 2 == 0;

}

The arrow => also makes the inner closure take the this context from its
parent, but we're not going make use of this a lot here.

To run this demo, we'll just need Node.js runtime:

$ node rxjs_01.js

Next: 2

Next: 4

Next: 6

Next: 8

Even with this very primitive example, we can already see how different it is
from PHP. When using Composer, we don't need to worry about where our
dependencies come from because they're always loaded by the SPL
autoloader usually generated by Composer.

Asynchronous calls in RxJS
Every time we wanted to make code in PHP asynchronous, we had to stick to
event loops: in particular, StreamSelectLoop and EventLoopScheduler, and
there was no way around it. Every IntervalObservable had to take as an
argument a Scheduler (however, in RxPHP 2 this is done automatically for us
so we usually don't need to worry about it).

This is in RxJS, and in general, any JavaScript environment completely
different from PHP.

Consider the following example:

// interval_01.js

const Rx = require('rxjs/Rx');

const Observable = Rx.Observable;

Observable.interval(1000)

 .subscribe(val => console.log('#1 Next:', val));

Observable.interval(60)

 .subscribe(val => console.log('#2 Next:', val));

Note that we're using no loops and no Schedulers. In fact in RxJS 5, it's not
that common for operators to take a Scheduler as an argument. The majority
of operators don't because they don't need to schedule anything (such as the
map() or filter() operators) and usually only those that need to work with
timers do (basically, all operators containing work "time").

This also implies that we don't need to worry about the different parts of our
application is using different even loops. We discussed this topic in Chapter
06 , PHP Streams API and Higher-Order Observables, and Chapter 07 ,
Implementing Socket IPC and WebSocket Server/Client, where we saw that
this, left unattended, may cause deadlocks.

We can run this demo and see ever-increasing counters triggering:

$ node interval_01.js

#2 Next: 0

#1 Next: 0

#2 Next: 1

#2 Next: 2

#1 Next: 1

#2 Next: 3

A good question is why is it so simple in JavaScript and yet needs to be so
complicated in PHP?

Node.js and asynchronous events
Node.js is in fact one large event loop based on the libuv library (
http://docs.libuv.org/).

Let's consider the following example that demonstrates adding a new
callback to the event loop:

// node_01.js

console.log('Starting application...');

var num = 5;

console.log('num =', num);

setTimeout(() => {

 console.log('Inside setTimeout');

 num += 1;

 console.log('num =', num);

});

console.log('After scheduling another callback');

console.log('num =', num);

When we run an application in Node.js, it takes our code as a single callback
and starts executing it. Somewhere in our code, we're calling the
setTimeout() function that takes as argument another callback that will be
executed after some period of time. However, we called setTimeout()
without providing any timeout.

This in fact doesn't matter because setTimeout() adds the callback to the
event loop to be run as the last one after all other callbacks are executed.
Using callbacks, we can easily make Node.js run our code asynchronously.
It's also typical for Node.js that all system calls are asynchronous and take
callbacks as parameters in order to be non-blocking.

The output in the console is as follows:

$ node node_01.js

Starting application...

num = 5

After scheduling another callback

http://docs.libuv.org/

num = 5

Inside setTimeout

num = 6

We can see that the callback was really called after the outer callback got
finished. When there're no more callbacks in the event loop and no callbacks
are pending, then Node.js terminates.

Deep inside libuv, there's actually a thread pool that runs in parallel and
handles system calls that can be run concurrently. Nonetheless, this has no
effect on our code because Node.js will always execute callbacks one after
another. This is a huge difference to PHP where none of this exists and the
only way to schedule asynchronous calls is using custom event loops just like
we did with StreamSelectLoop.

Keep in mind that from our point of view, Node.js is always single threaded
and strictly sequential. This means that just like in PHP if we write code that
is blocking, it's going to block the execution thread as well. Node.js never
executes callbacks in parallel. This of course applies to browser JavaScript
environments as well.

If we wanted to run code in parallel, we could spawn subprocesses just like
we did for example in Chapter 06 , PHP Streams API and Higher-Order
Observables.

Lossy backpressure with the
debounceTime() operator
We know what backpressure is already from Chapter 07 , Implementing
Socket IPC and WebSocket Server/Client. A typical use case in RxJS is
debounceTime() that takes a value and then waits until the specified timeout
expires before re-emitting it further. This is very useful, for example, when
creating an autocomplete feature where we want to postpone sending AJAX
requests when the user is still typing into an input field (as we saw in Chapter
1 , Introduction to Reactive Programming).

Let's have a look at its marble diagram:

In order to illustrate a practical example of debounceTime(), consider the
following example:

// debounce_time_01.js

Observable.interval(100)

 .concatMap(val => {

 let obs = Observable.of(val);

 return val % 5 == 0 ? obs.delay(250) : obs;

 })

 .debounceTime(200)

 .subscribe(val => console.log(val));

This example emits a value every 100 ms and every fifth value is delayed by
250 ms. That's why most of the values are ignored by debounceTime()
because this operator requires an at least 200 ms long period without any
emission from the source.

The output is as follows:

$ node debounce_time_01.js

4

9

14

There's one very nice practical example for debounceTime() that makes use
of JavaScript's asynchronous callbacks.

In the first chapter, when talking about reactive programming, we mentioned
that a common application that we consider "reactive" is Excel. We have
multiple cells with equations that define their relations and every change to
any cell is propagated to the entire spreadsheet.

Let's consider the following spreadsheet with three input values A, B, and C
and the following equations we made on them:

Now, how can we create something similar in RxJS? We can represent each
cell as BehaviorSubject with a default value (we need to use Subjects in
order to be able to change cell values later). Then, each equation (for
example, A + B) will be held by combineLatest().

The preceding spreadsheet could look like this in RxJS:

// excel_01.js

const Rx = require('rxjs/Rx');

const Observable = Rx.Observable;

const BehaviorSubject = Rx.BehaviorSubject;

let A = new BehaviorSubject(1);

let B = new BehaviorSubject(2);

let C = new BehaviorSubject(3);

let AB = Observable.combineLatest(A, B, (a, b) => a + b)

 .do(x => console.log('A + B = ' + x));

let BC = Observable.combineLatest(B, C, (b, c) => b + c)

 .do(x => console.log('B + C = ' + x));

let ABBC = Observable.combineLatest(AB, BC, (ab, bc) => ab + bc)

 .do(x => console.log('AB + BC = ' + x));

ABBC.subscribe();

We're using combineLatest() to get notified when any of the source
Observables for each equation change. We also have multiple do() operators
to log what's going on in our Observable chains.

When we run this demo, we'll see the following output:

$ node excel_01.js

A + B = 3

B + C = 5

AB + BC = 8

This is obviously correct. Each equation was called exactly once.

Now, let's imagine that we change the B cell value to 4 after the default values
were propagated. This means that it'll need to recalculate AB, BC, and ABBC.

The desired state after updating the B cell should look like the following
screenshot:

Append these two lines to the source file:

...

console.log("Updating B = 4 ...");

B.next(4);

Then, rerun the example and pay attention to what equations were evaluated:

$ node excel_01.js

A + B = 3

B + C = 5

AB + BC = 8

Updating B = 4 ...

A + B = 5

AB + BC = 10

B + C = 7

AB + BC = 12

The first three are alright. Then, we set B = 4, which triggers the
recalculation of A + B, and right after that, AB + BC equals 10. Well, this is
not correct because we haven't updated also B + C, which comes next. Then,
after updating BC, the AB + BC is recalculated again and the correct value is
set to ABBC.

We could just ignore this because the result is correct at the end. However, if
the number of cells and the number of equations grew, then each redundant
update would still cause an update to the page's DOM. As a result, this could
make the page laggy and the user might notice the cells blinking.

So how can we avoid this?

We said that when debounceTime() receives a value, it stores it internally
and starts a timeout. Then it doesn't re-emit any value until the timeout's
callback is evaluated, which re-emits only the last value debounceTime()
received. We can use this to our advantage by knowing that we can set 0
timeout, which won't delay the callback but just puts in at the end of Node.js's
event loop.

In other words, when we use debounceTime(0), we'll ignore all values that
debounceTime() receives until the end of this callback. So, we can use this to
calculate AB + BC:

let ABBC = Observable.combineLatest(AB, BC, (ab, bc) => ab + bc)

 .debounceTime(0)

 .do(x => console.log('AB + BC = ' + x));

Now if we run the code again, we'll see the output we wanted:

$ node excel_01.js

A + B = 3

B + C = 5

Updating B = 4 ...

A + B = 5

B + C = 7

AB + BC = 12

This is definitely an advanced use case that we won't encounter on a daily
basis, but it's nice to see that we can use JavaScript internals to our
advantage.

Note that this is something very difficult to do in RxPHP without using an
event loop and custom operators, yet relatively simple in JavaScript.

Higher-order Observables in RxJS
5 and RxPHP
When developing browser applications, we very often need to make AJAX
calls to fetch data asynchronously. For example, in Angular2, this is very
common, and in fact, any AJAX request made using Angular2's HTTP
service returns an Observable where we typically chain the map() operator to
decode JSON and then use subscribe() to be notified when the response is
ready.

We can simulate such a situation with the following code:

// http_mock_01.js

const Rx = require('rxjs/Rx');

let data = '[{"name": "John"},{"name": "Bob"},{"name": "Dan"}]';

Rx.Observable.of(data)

 .map(response => JSON.parse(response))

 .subscribe(value => console.log('Next:', value));

Variable data contains a JSON-serialized array of objects that we decode and
pass to the observer. The output looks like the following:

$ node http_mock_01.js

Next: [{ name: 'John' }, { name: 'Bob' }, { name: 'Dan' }]

Well, it works, but what if we wanted to receive only objects with the name
property starting with the letter B? Right now, we received the entire array of
objects as a single emission.

So, the question is how can we unpack the array and emit every single object
separately?

One option that can be used in RxJS and RxPHP in exactly the same way is
using concatMap() (mergeMap() would work as well) and return a new
Observable created from an iterable object. In RxJS, this could be as follows:

// http_mock_02.js

...

Observable.of(data)

 .map(response => JSON.parse(response))

 .concatMap(array => Observable.from(array))

 .filter(object => object.name[0].toLowerCase() == "b")

 .subscribe(value => console.log('Next:', value));

In RxJS 5, Observable.from() takes as a parameter any array-like object and
emits all its items. In RxPHP, we'd use Observable::fromArray() instead.

Now the output is a single item because the rest was skipped thanks to the
filter() operator:

$ node http_mock_02.js

Next: { name: 'Bob' }

In RxJS 5, there's also another and quite clever way to achieve the same
result.

We've talked about operators that work with higher-order Observables, such
as mergeAll() or concatAll(). These subscribe to an Observable that emits
Observables. Due to RxJS 5 inner implementation, we can use a little trick
and use operators that normally work with only higher-order Observables to
work with arrays as well.

Let's see how concatAll() can be used to achieve the same result as
concatMap() in the preceding example:

Observable.of(data)

 .map(data => JSON.parse(data))

 .concatAll()

 .filter(object => object.name[0].toLowerCase() == "b")

 .subscribe(value => console.log('Next:', value));

So, this obviously shouldn't work. How can concatAll() subscribe to an
array?

The answer lies in the way concatAll(), and basically, all operators working
with higher-order Observables internally subscribe to items emitted by the

source Observable. In PHP, we'd expect that all of them have to be other
Observables, but this is not the case for RxJS 5.

Some operators in RxJS 5 subscribe to inner Observables via a function
named subscribeToResult() (it's defined in
src/util/subscribeToResult.ts). This function has multiple handlers for
different types of items. There's of course a handler for Observables, but
apart from that, it also knows how to work with Promises as well as
JavaScript arrays.

When we used concatAll() earlier, the subscribeToResult() function just
iterated the array and re-emitted all its values. Note that it just iterated the
array internally. It didn't create another Observable from it.

So, these were just two, but useful, differences we can encounter when
switching from RxPHP to RxJS 5.

Operators specific for RxJS 5
As we said, there are extra operators in RxJS 5 that aren't available in RxPHP
right now. There are in fact, quite of few of them, but many are very similar
in principle. We mentioned some of them in Chapter 07 , Implementing
Socket IPC and WebSocket Server/Client, such as audit() or throttle(),
including all their variations that use timeouts or other Observables to create
time windows. Also, all operators derived from buffer() aren't so interesting
for us.

We'll have a look at the three of them that serve some other interesting
purposes.

The expand() operator
The interesting thing about the expand() operator is that it works recursively.
It takes as a parameter a callback that needs to return another Observable.
The callback is then applied to all values emitted by the returned Observable.
This goes on as long as the returned Observables emit values.

Consider the following example where we use expand() to recursively
multiply a value by two as long as the result is less than 32:

// expand_01.js

const Rx = require('rxjs/Rx');

const Observable = Rx.Observable;

Observable.of(1)

 .expand(val => {

 if (val > 32) {

 return Observable.empty();

 } else {

 return Observable.of(val * 2);

 }

 })

 .subscribe(val => console.log(val));

We stop the recursion by not emitting any value and returning just
Observable.empty() (which emits just a complete signal).

All intermediate values produced by all the recursive calls are re-emitted by
expand(), so the output from this example will look as follows:

$ node expand_01.js

1

2

4

8

16

32

64

The finally() operator
As the name suggests, this operator executes its callback on both the error
and complete signals. It's important to see the difference between finally()
and just subscribing and using the same callbacks for error and complete
signals.

The finally() operator doesn't turn cold Observables to hot. So, it's more
similar to the do() operator than to the subscribe() method:

// finally_01.js

const Rx = require('rxjs/Rx');

let source = Rx.Observable.create(observer => {

 observer.next(1);

 observer.error('error message');

 observer.next(3);

 observer.complete();

 });

source

 .finally(() => console.log('#1 Finally callback'))

 .subscribe(

 value => console.log('#1 Next:', value),

 error => console.log('#1 Error:', error),

 () => console.log('#1 Complete')

);

source

 .onErrorResumeNext()

 .finally(() => console.log('#2 Finally callback'))

 .subscribe(

 value => console.log('#2 Next:', value),

 error => console.log('#2 Error:', error),

 () => console.log('#2 Complete')

);

The first subscription will receive only the first value and then the error
signal. Note the order in which we used the finally() operator and the
subscribe() call. Operator finally() comes first so it also receives the
error signal first.

The second subscription is analogous. Also, this one uses
onErrorResumeNext() to ignore the error signal (even though it won't receive
the last value because it has already unsubscribed). It'll receive just the
complete signal. Again, note where the finally() operator is used.

When we run this example, we'll get the following output:

$ node finally_01.js

#1 Next: 1

#1 Error: error message

#1 Finally callback

#2 Next: 1

#2 Complete

#2 Finally callback

Even though both finally() operators are used before subscribe() (which
is obvious because these are operators that need to be somewhere in the
chain), their callbacks were executed after the error or complete callbacks
from subscribe().

This is the fundamental difference of the do() operator and also the reason
why finally() might come in handy in certain situations.

The withLatestFrom() operator
In Chapter 07 , Implementing Socket IPC and WebSocket Server/Client, and
Chapter 8 , Multicasting in RxPHP and PHP7 pthreads Extension, we used
the combineLatest() operator, and we mentioned that in RxJS 5, there's also
a slightly modified variant.

The combineLatest() operator takes multiple source Observables and emits
their most recent values as an array when any of them emit a value. Then,
there's the withLatestFrom() operator that takes multiple sources as well,
but this operator emits a value only when its direct predecessor in the chain
emits a value (its source Observable).

Consider the following example with multiple timers:

// with_latest_from_01.js

const Rx = require('rxjs/Rx');

const Observable = Rx.Observable;

let source1 = Observable.interval(150);

let source2 = Observable.interval(250);

Observable.interval(1000)

 .withLatestFrom(source1, source2)

 .subscribe(response => console.log(response));

Both source1 and source2 emit multiple values every second. However,
withLatestFrom() re-emits their values only when
Observable.interval(1000) emits a value.

The output from this demo is as follows:

$ node with_latest_from_01.js

[0, 5, 2]

[1, 12, 6]

[2, 19, 10]

[3, 25, 14]

[4, 31, 18]

[5, 38, 22]

[6, 45, 26]

[7, 51, 30]

Use cases for this operator are very similar to those for combineLatest().
We just have a better control of the re-emission, which could be useful, for
example, to implement caching mechanisms where the 1-second interval
could control when we want to refresh the cache.

While speaking of caching, we will have a look at the last and very nice
example in this book.

Caching HTTP requests with
publishReplay() and take()
This example is my favorite. I show this demo to people who want to start
with RxJS and they're overwhelmed by the complexity and don't see the
practical advantage.

A very common use case in frontend development is that we need to cache
results from AJAX calls. For example, we might have a server that we want
to query once a minute at most. All subsequent calls under one minute won't
spawn another AJAX call but receive only the cached data.

This can all be done by leveraging the publishReplay() and take()
operators:

// cache_01.js

const Rx = require('rxjs/Rx');

const Observable = Rx.Observable;

var counter = 1;

var updateTrigger = Observable.defer(() => mockDataFetch())

 .publishReplay(1, 1000)

 .refCount();

function mockDataFetch() {

 return Observable.of(counter++).delay(100);

}

function mockHttpCache() {

 return updateTrigger.take(1);

}

We're creating mock requests with the mockDataFetch() function that
increments the counter every time it's called (this is to make sure that we're
not making more calls to the server than we think). Then, we delay this
Observable to pretend it takes some time.

Every time we want to get current data from a cache or from a fresh AJAX
request, we use the mockHttpCache() function that returns an Observable.

Let's have a look at how we schedule a couple of calls and then make sure
that this really works as we expect from the console output. After this, we can
explain why this works:

mockHttpCache().toPromise()

 .then(val => console.log("Response from 0:", val));

setTimeout(() => mockHttpCache().toPromise()

 .then(val => console.log("Response from 200:", val))

, 200);

setTimeout(() => mockHttpCache().toPromise()

 .then(val => console.log("Response from 1200:", val))

, 1200);

setTimeout(() => mockHttpCache().toPromise()

 .then(val => console.log("Response from 1500:", val))

, 1500);

setTimeout(() => mockHttpCache().toPromise()

 .then(val => console.log("Response from 3500:", val))

, 3500);

We're making five requests in total. The first two should receive the same
response. The next two will receive another response, and the last one will
have the third response. For illustrational purposes, we're caching responses
only for 1 second.

Now, let's see the console output:

$ node cache_01.js

Response from 0: 1

Response from 200: 1

Response from 1200: 2

Response from 1500: 2

Response from 3500: 3

So, it really works as we want; but how?

The publishReplay(1, 1000) operator multicasts responses for 1 second via
ReplaySubject (see Chapter 8 , Multicasting in RxPHP and PHP7 pthreads
Extension, for more info on multicasting). After 1 second, it discards the

stored result.

When we call mockHttpCache(), one of these situations occur:

We subscribe to ReplaySubject that already has a cached response. In
that case, on subscription, it immediately calls next() and sends this
value to its new subscriber. Since there's take(1) operator, it passes the
value and the chain completes. The ReplaySubject then checks whether
the subscriber has stopped after passing it the cached value. Thanks to
take(1) it does stop, so ReplaySubject won't subscribe to the deferred
Observable.
We subscribe to ReplaySubject, but it doesn't have any valid response
cached and/or it also needs to subscribe to the deferred Observable that
triggers a new AJAX request. When the request is ready, it's passed
down the chain where take(1) re-emits it and completes.

So this was a pretty short and clever way to make already sophisticated
functionality that would normally require using at least one setTimeout()
and at a minimum two state variables to keep the cached response and the
time it was created.

Summary
This final chapter was dedicated to RxJS 5 to show that while most principles
are the same, there are a couple of differences that we can take advantage of.

After reading this chapter, you should know the differences between RxJS 4
and RxJS 5, what technologies are used to develop and deploy RxJS 5, how
Node.js handles asynchronous code, and what operators are present in RxJS 5
already but aren't implemented in RxPHP yet.

Hopefully, you'll take the best out of RxJS and RxPHP and use it to write
faster and more readable code yourself.

	PHP Reactive Programming
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Introduction to Reactive Programming
	Imperative programming
	Declarative programming
	Sequential and parallel programming
	Asynchronous programming
	Asynchronous versus parallel programming
	Functional programming
	Functional programming in PHP
	Eliminating side effects
	Avoiding mutable data
	First-class citizens and higher-order functions
	Anonymous functions in PHP
	PHP magic methods
	Reactive programming
	jQuery Promises
	Gulp streaming build system
	EventDispatcher component in PHP
	Reactive Extensions
	Autocomplete with RxJS
	Mouse position on drag and drop
	Introducing RxPHP
	RxPHP 1.x and RxPHP 2
	Summary
	2. Reactive Programming with RxPHP
	Basic principles of Reactive Extensions
	Naming conventions in Reactive Extensions
	Components of RxPHP
	Observables
	Observers
	Singles
	Subject
	Disposable
	Scheduler
	Operators
	Understanding the operator diagrams
	The filter() operator
	The debounceTime() operator
	The concat operator
	Other common operators
	Writing the DebugSubject class
	Writing JSONDecodeOperator
	Simplifying propagation of notifications
	Using custom operators in RxPHP 2
	Writing CURLObservable
	Imperative approach and cURL
	Implementing cURL into a custom Observable
	Running multiple requests asynchronously
	The proc_open() and non-blocking fread()
	Event loop and RxPHP
	Summary
	3. Writing a Reddit Reader with RxPHP
	Examining RxPHP's internals
	A closer look at subscribing to Observables
	Emitting multiple values with Schedulers
	A closer look at operator chains
	Subscribing to ConnectableObservable
	Using Subject instead of ConnectableObservable
	Observable::create() and Observable::defer()
	Creating Observables with Observable::create()
	Creating Observables with Observable::defer()
	Writing a Reddit reader using RxPHP
	Using the Symfony Console component
	Non-blocking user input and an event loop
	Subscribing to user inputs
	Non-blocking CURLObservable
	Using Symfony Process component
	The takeWhile() operator
	Implementing subprocesses into the Reddit reader app
	Types of disposable classes
	Summary
	4. Reactive versus a Typical Event-Driven Approach
	Handling error states in operator chains
	The retry() operator
	CURLObservable and the retry() operator
	The retryWhen() operator
	CURLObservable and the retryWhen() operator
	CURLObservable and controlled number of retries
	The catchError() operator
	The concat() and merge() operators
	The merge() operator
	The concat() operator
	The concatMap() and flatMap() operators
	Writing a reactive event dispatcher
	A quick introduction to EventDispatcher
	Working with event listeners
	Working with event subscribers
	Writing ReactiveEventDispatcher with RxPHP
	Internal representation of event listeners as observers
	Writing a ReactiveEventDispatcher class
	Adding event listeners
	Adding Observables
	Adding event subscribers
	Creating the Observable chain for an event
	Comparing filter() to takeWhile()
	Dispatching events
	Practical example of ReactiveEventDispatcher
	Working with event listeners
	Working with event subscribers
	Summary
	5. Testing RxPHP Code
	The doOn*() operators
	Installing the PHPUnit package
	Basics of writing tests using PHPUnit
	Testing asynchronous code
	Testing RxPHP code
	Introducing VirtualTimeScheduler
	HotObservable and ColdObservable
	MockObserver
	TestScheduler
	Testing SumOperator
	Testing ForkJoinObservable
	Summary
	6. PHP Streams API and Higher-Order Observables
	Using Promises in PHP
	Using the then() and done() methods
	Using the otherwise() and always() methods
	PHP Streams API
	Using the stream_select() function
	StreamSelectLoop and stream_select() function
	Scheduling events with StreamSelectLoop
	Minimalistic HTTP Server with StreamSelectLoop
	A note on nonblocking event loops
	Using multiple StreamSelectLoop instances
	Event loop interoperability in PHP
	Event loops and future versions of RxPHP
	Higher-order Observables
	The concatAll() and mergeAll() operators
	The switchLatest Operator
	The combineLatest() operator
	Summary
	7. Implementing Socket IPC and WebSocket Server/Client
	Backpressure in Reactive Extensions
	Lossy backpressure
	Implementing throttleTime() with the filter() operator
	Loss-less backpressure
	Implementing ProcessObservable
	Server Manager application
	Creating new subprocesses with ProcessObservable
	Game Server application
	Server Manager and the Unix socket server
	Implementing the GameServerStreamEndpoint class
	Displaying real-time statuses from subprocesses
	Combining the switchLatest() and combineLatest() operators
	Implementing a WebSocket server
	Implementing a WebSocket client
	Summary
	8. Multicasting in RxPHP and PHP7 pthreads Extension
	Subjects
	BehaviorSubject
	ReplaySubject
	AsyncSubject
	Multicasting in RxPHP
	The multicast() operator and ConnectableObservable
	MulticastObservable
	Subjects and their internal state
	The multicast() operator and MulticastObservable
	Comparing ConnectableObservable and MulticastObservable
	The multicastWithSelector() operator
	The publish*() and share*() operator groups
	The refCount() operator
	The publish() and share() operators
	The publishValue() and shareValue() operators
	The replay(), shareReplay(), and publishLast() operators
	PHP pthreads extension
	Prerequisites
	Introduction to multithreading with pthreads in PHP7
	Getting/setting data from/to threads
	Using Thread, Worker, and Pool classes
	Retrieving results from thread pools
	RxPHP and pthreads
	Summary
	9. Multithreaded and Distributed Computing with pthreads and Gearman
	Introduction to the PHP Parser library
	Using the PHP Parser library
	Implementing PHPParserOperator
	Writing AssignmentInConditionNodeVisitor
	Writing PHPParserOperator
	Implementing ThreadPoolOperator
	Implementing PHPParserThread
	Implementing PHPParserWorker
	Running PHP Parser in a multithreaded application
	Introduction to Gearman
	String strlen client and worker
	Running PHP Parser as a Gearman worker
	Comparing pthreads and Gearman
	Summary
	10. Using Advanced Operators and Techniques in RxPHP
	The zip() operator
	The window() operator
	The materialize() and dematerialize() operators
	Customizing error bubbling with dematerialize()
	Error handling in RxPHP operator chains
	The default error handler
	Catching exceptions inside operators
	The Observable::create() method versus the Subject class
	Hot/cold Observables and Observable::create()
	Call stack length and EventLoopScheduler
	Unsubscribing versus completing an Observable
	Anonymous operators
	Writing a custom DirectoryIteratorObservable
	DirectoryIteratorSharedObservable
	FTP client with RxPHP
	Summary
	Appendix. Reusing RxPHP Techniques in RxJS
	What is RxJS?
	JavaScript module systems
	The deployment process of RxJS 5
	A quick introduction to RxJS 5 in Node.js
	Asynchronous calls in RxJS
	Node.js and asynchronous events
	Lossy backpressure with the debounceTime() operator
	Higher-order Observables in RxJS 5 and RxPHP
	Operators specific for RxJS 5
	The expand() operator
	The finally() operator
	The withLatestFrom() operator
	Caching HTTP requests with publishReplay() and take()
	Summary

